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Abstract
Let P be a point of a compact Riemann surface X . We study self-adjoint extensions
of the Dolbeault Laplacians in hermitian line bundles L over X initially defined on
sections with compact supports in X\{P}. We define the ζ -regularized determinants
for these operators and derive comparison formulas for them. We introduce the notion
of the Robinmass of L . This quantity enters the comparison formulas for determinants
and is related to the regularized ζ(1) for the Dolbeault Laplacian. For spinor bundles of
even characteristic, we find an explicit expression for the Robin mass. In addition, we
propose an explicit formula for the Robin mass in the scalar case. Using this formula,
we describe the evolution of the regularized ζ(1) for scalar Laplacian under the Ricci
flow. As a byproduct, we find an alternative proof for the Morpurgo result that the
round metric minimizes the regularized ζ(1) for surfaces of genus zero.
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mass

Mathematics Subject Classification Primary 58J50 · 58J52 · Secondary 30F45 ·
32L05 35J05

1 Introduction

Let X be a compact Riemann surface of genus g endowed with smooth conformal
metric ρ−2|dz|2 and let L be a holomorphic line bundle over X with smooth hermitian
metric h. The Dolbeault Laplacian � acts on smooth sections of L by

�u = −4ρ2h−1∂(h∂u). (1)
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Its closure in L2(X; L) is a self-adjoint operator, also denoted by �.
Let x, y, z denote holomorphic local coordinates on X and let x �→ u(x) denote

the representative of a section u in a local coordinate x . Let x, y �→ G(x, y) be the
Green function (section of Lx⊗̂Ly) of � and x, y �→ 1(x, y) be a smooth section of
Lx⊗̂L−1

y obeying 1(x, x) = 1.
Chose a point P of X . Introduce the operator �̇ as the L2(X; L)-closure of operator

(1) defined on smooth sections of L with compact supports in Ẋ = X\{P}. In Sect. 2,
we prove that the operators �α (α ∈ (−π/2, π/2]) acting via

�αu = �
(
u − cu(y)h(y)G(·, y)sinα)

(y = y(P)) (2)

on the domains

Dom�α = {
u = cu(y)

(
h(y)G(·, y)sinα + 1(·, y)cosα) + ũ| y = y(P), cu

∈ �(X; L), ũ ∈ Dom�̇
}

(3)

are all the self-adjoint extensions of �̇ while �0 ≡ � is the Friedrichs extension.
This statement extends the result of Colin de Verdière [7] who dealt with case

of trivial bundle L with h = 1. Following [7], we call the operators �α (α �= 0)
pseudo-laplacians. The (scalar) pseudo-laplacians arise as rigorous counterparts of
the formal operators � + εδP (where δP is the Dirac measure at P and ε ∈ R, see
[3] and Chapter III,4 [2]) in the models of point scattering of quantum particles first
introduced by Enrico Fermi [9]. The equation�αu = λu (in the scalar case) describes
motion of a quantum particle on the surface in the presence of a point scatterer (Sěba
billiard, see [16]).

Ourmain goal is to study the ζ -regularized determinants of�α . In Sect. 3, we derive
comparison formulas for the determinants of�α and�. From now on, we assume that
L admits no non-trivial holomorphic sections, h0(L) = 0; then Ker� = {0}. Except
for the case α = 0, the derivative of zeta-function s �→ ζ(s|�α) has logarithmic
singularity at s = 0. For this reason, we apply the following regularization (proposed
and discussed in a similar context by Kirsten, Loya, and Park, see [12])

det(r)�α = exp
( − ∂sζ

(r)(s|�α)
)|s=0, ζ (r)(s|�α) = ζ(s|�α) + slogs (4)

for the determinants of pseudo-laplacians �α . We prove that

det(r)�α

det�
= −4πeγ ctgα. (5)

where γ is the Euler constant.
It might seem that the dependence of det(r)�α/det� on the surface (X , ρ−2), the

bundle (L, h) and the point P in formula (5) is trivial. However, such a dependence
is included implicitly in our parameterization (2), (3) of pseudo-laplacians (i.e. in the
way to assign a number α to a self-adjoint extension of �̇). Parameterization (2), (3)
is coordinate independent in the sense that the pseudo-laplacian is described in terms
of the invariantly (and globally) defined Green section G.
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One can parametrize the pseudo-laplacians in a purely local way by describing the
asymptotics of sections from their domains near P . However, such a parametrization
is obtained at the cost of the loss of coordinate independence (except of the case of
the trivial bundle). Namely, let x be a holomorphic coordinate in the neighborhood of
P and let y = x(P). Introduce the operator �(β) acting as

�(β)u = −4ρ2h−1∂(h∂u) in Ẋ (6)

on all the sections u of L that are locally H2-smooth outside P and admit the
asymptotics

u(x) = cosβ + sinβ
[

− 1

2π
log|x − y| + ∂y logh(y)

4π
(x − y)log(x − y)

]
+ ũ (7)

near P , where ũ is H2-smooth in a neighborhood of P and ũ(y) = 0. Then �(β) with
β ∈ (−π/2, π/2) are all the self-adjoint extensions of �̇.

To describe the relation between different parametrizations�α ,�(β) of the pseudo-
laplacian, let us recall that the Green function G admits the asymptotics

h(y)G(x, y) = − 1

2π
log d(x, y) + m(y) + o(1) =

= − 1

2π
log |x − y| + 1

2π
logρ(y) + m(y) + o(1) (x → y)

(8)

where d(x, y) is the distance between x and y in the metrics ρ−2|dz|2. In the case of
trivial bundle L with h = 1, the coefficient m(y) in (8) is called the Robin mass at y
(see, e.g., [14, 15, 17]). Similarly, we call m(y) in (8) the Robin mass at y associated
with the Riemannian manifold (X , ρ−2) and the hermitian line bundle (L, h). (Note
that y �→ m(y) is a scalar function on X , cf. p.199, [14].) Comparing (3) and (7) by
using (8), we obtain

�(β) = �α ⇐⇒ ctgβ = ctgα + m(P) + 1

2π
logρ(y). (9)

Thus, formula (5) can be rewritten as

det(r)�(β)

det�
= −4πeγ

(
ctgβ − m(P) − 1

2π
logρ(y)

)
. (10)

Here the pseudo-laplacian is defined in purely local terms (such as the metrics and
their derivatives at P in coordinate x) while the dependence of det(r)�(β)/det� on
(X , ρ−2), (L, h), P becomes explicit due to the presence of the Robin mass m(P)

in the right-hand side. Equality (10) extends the result obtained for the case of trivial
bundle L in [1], Theorem 1. Note that, in the case of trivial bundle L , λ = 0 is an
eigenvalue of � (h0(L) = 1) and the analogue of formula (5) is less interesting.
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To make formula (10) completely explicit one needs to calculate the Robin mass
m(P). In Sect. 4 we compute m(P) for holomorphic line bundles L obeying

deg(L) = g − 1, h0(L) = 0. (11)

In particular, for a generic surface X , this includes the case of spin- 12 bundles with
even characteristics. In the latter case, formula (10) becomes completely explicit since
det� in the left-hand side is related to the scalar Laplacian via the Bost–Nelson
bosonization formula (see [5]) while plenty of explicit formulas for determinants of
scalar Laplacians are available.

Note that each L obeying (11) is isomorphic to�⊗χ , where� is the basic (i.e. with
characteristic (0, 0)) spinor bundle while χ is a unitary holomorphic line bundle (see
Example 2.3 on pp.28,29, [8]). We prove the following formula (for the case g ≥ 2)

m(x) = 1

4π2

∫

X

[∣∣∣
θ [χ ](A(y − x)

)

θ [χ ](0)E(x, y)

∣∣∣
2 h(x)

h(y)
−

∣∣∣∂y log
(

F(x, y)

ρ(x)ρ(y)

) ∣∣∣
2 +

+
( K (y)

4ρ2(y)
− π(�v(y))t (�B)−1�v(y)

)
log

(
F(x, y)

ρ(x)ρ(y)

)]
d̂ y.

(12)

Here d̂ y = dy ∧ dy/2i , E(x, y) is the prime-form of X , θ(χ) is the theta-function
(defined in [8], (1.9)), �v = (v1, . . . , vg)

t is the basis of Abelian differentials on
X normalized with respect to a chosen canonical basis of cycles, B is the matrix
of b-periods of X , A(D) denotes the Abel transform of the divisor D on X , and
K (y) = [4ρ2∂∂logρ](y) is the Gaussian curvature of the metric ρ−2|dz|2 at y. The
symmetric section

F(x, y) = exp
[

− 2π�A(x − y)t (�B)−1�A(x − y)
]
|E(x, y)|2 (13)

of |Kx |−1⊗̂|Ky |−1 has been introduced by E. and H. Verlinde (see [18], formula
(5.10)). Note that

G(sc)(x, y) = 1

2

(
m(sc)(x) + m(sc)(y)

) − 1

4π
log

(
F(x, y)

ρ(x)ρ(y)

)
, (14)

where G(sc)(x, y) andm(sc) are the scalar Green function and the Robin mass, respec-
tively (see [18], formula (5.7)). Thus, as emphasized in [18], F(x, y) can be considered
as a conformally invariant part of the scalar Green function.

Note that the integrand in the right-hand side of (12) contains two nonintegrable
terms terms whose singularities (of order |x− y|−2) cancel. Thus, the whole integrand
has only integrable singularity (of order O(|x − y|−1)).

It should be noted that the Robin mass and the zeta function s �→ ζ(s|�) of the
Laplacian� are related as follows. Recall that s �→ ζ(s|�) has a simple pole at s = 1.
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One can define the regularized ζ(1|�) as

ζ (r)(1|�) = lim
s→1

(
ζ(s|�) − Area(X; ρ)

4π(s − 1)

)
. (15)

Then

ζ (r)(1|�) =
∫

X

m(x)dSρ(x) + γ − log2

2π
Area(X; ρ), (16)

where dSρ(x) = ρ−2(x)dx ∧ dx/2i is the volume form on X and Area(X; ρ) is the
area of X in the metric ρ−2|dz|2. Formula (16) is derived in [17], Proposition 2 for
the case of the scalar Laplacian −4ρ2∂∂ . In Sect. 5 we extend the proof of (16) to the
general case by making use of the results of [8].

Expressions (13), (14) turn out to be useful for the study of ζ (r)(1|�) in the case
of the scalar Laplacian � = �(sc) = −4ρ2∂∂ . In Sect. 6, we derive explicit formula
(55) for the Robin mass m(sc) in the scalar case. Using this formula, we describe the
evolution (given by equations (59) and (16)) of ζ (r)(1|�(sc)) for scalar Laplacian under
the Ricci flow. In the genus zero case, we prove that ζ (r)(1|�(sc)) is non-increasing
under the Ricci flow. As a byproduct, we find an alternative proof for the Morpurgo
result that the round metrics minimizes the regularized ζ (r)(1|�(sc)) for surfaces of
genus zero.

2 Pseudo-laplacians

In this section, we describe all the self-adjoint extensions of �̇.
First, let us describe the domain of �̇. Let {Uk, zk}k be a finite biholomorphic atlas

on X and let {φk} be a (smooth) partition of unity on X subordinate to the open cover
{Uk}k . We assume that U1 is a neighborhood of P , z1(P) = 0, and the support of φ1
is sufficiently small. In what follows, we denote ξ1 = �z1, ξ2 = �z1, and r = |z1|.
Introduce the Sobolev space Hl(X; L) of sections of L with finite norms

‖u‖Hl (X;L) =
(

∑

k

‖ úk‖2Hl (C)

) 1
2

, úk(zk) := φk(zk)u(zk) (17)

(here Hl(C) is the usual Sobolev space and úk = 0 outside zk(Uk)).
Let us recall well-known properties of Hl(X; L). Smooth sections of L are dense

in any Hl(X; L). Since operator (1) is elliptic, the H2(X; L)-norm is equivalent to
the graph norm

‖u‖� = (‖�u‖2L2(X;L) + ‖u‖2L2(X;L)

) 1
2 (18)

of�. The embedding H2(X; L) ⊂ C(X; L) is continuous. In view of the last property,
sections u ∈ H2(X; L) vanishing at P constitute the subspace H2

0 (Ẋ; L) in H2(X; L).
Let Ẋ = X\{P}, let C∞

0 (Ẋ; L) be the space of all smooth sections of L vanishing at
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P , and let C∞
c (Ẋ; L) be the space of all smooth sections of L with compact supports

in Ẋ .

Lemma 2.1 C∞
c (Ẋ; L) is dense in H2

0 (Ẋ; L).

Proof Let u ∈ H2
0 (Ẋ; L). Then there is a sequence of smooth sections uk converging to

u in H2(X; L). Due to the continuity of the embedding H2(X; L) ⊂ C(X; L), the last
convergence implies uk(z(P)) → 0. Then the sections vk = uk −uk(z(P))1(·, z(P))

converge to u in H2(X; L) while vk(z(P)) = 0. Thus, C∞
0 (Ẋ; L) is dense in

H2
0 (Ẋ; L).
Next, suppose that u ∈ C∞

0 (Ẋ; L). Let κ ∈ C∞(R), χ(s) = 0 for s ≤ 0 and
χ(s) = 1 for s ≥ 1. For large N , introduce the cut-off function κN on X which is
defined by

κN (z1) = κ(log |log r | − N )

on U1 and is equal to one outside U1. Then each section u(N ) = κNu belongs to
C∞
c (Ẋ; L) while ‖u − u(N )‖H2(X;L) = ‖(1 − κN )ú1‖H2(C)). Since ú1 is smooth and

ú1(0) = 0, we have

∫

C

|∂2r [(1 − κN )ú1]|2dξ1dξ2 ≤
N+1∫

log(−s)=N

cr2

r4(log r)2
rdr

=
−eN+1∫

−eN

c

s2
ds → 0 (N → +∞).

where s = log r . This and similar estimates for other partial derivatives of (1− κN )ú1
yield ‖(1− κN )ú1‖H2(C)) → 0 as N → +∞. Therefore, u(N ) → u in H2(X; L) and
C∞
c (Ẋ; L) is dense in H2

0 (Ẋ; L).

Since C∞
c (Ẋ; L) ⊂ Dom�̇ and the H2(Ẋ; L)-norm and the graph norm are

equivalent, Lemma 2.1 implies the following corollary.

Corollary 2.2
Dom�̇ = H2

0 (Ẋ; L). (19)

Now, let us describe the domain of �̇∗.

Lemma 2.3 We have

Dom�̇∗ = {
u = C(y)h(y)G(·, y) + c(y)1(·, y) + ũ | y = y(P), c,C ∈ �(X; L),

ũ ∈ Dom�̇
}
, (20)

where y is a holomorphic coordinate in a neighborhood of P.
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Proof Suppose that �̇∗u = f , i.e. (u,�v)L2(X;L) = (u, �̇v)L2(X;L) = ( f , v)L2(X;L)

for any v ∈ Dom�̇ ≡ H2
0 (Ẋ; L) ⊂ Dom� (see (19)). Any section v ∈ H2(X; L) ≡

Dom� can be represented as v(x) = v(y)1(x, y) + ṽ(x), where y = y(P) is a
holomorphic coordinate of P while ṽ ∈ H2

0 (Ẋ; L). We have

(u,�v)L2(X;L) − v(y)(u,�1(·, y))L2(X;L) =
= (u,�ṽ)L2(X;L) = ( f , ṽ)L2(X;L) = ( f , v)L2(X;L) − v(y)( f , 1(·, y))L2(X;L),

i.e.

(u,�v)L2(X;L) − v(y)C(y) = ( f , v)L2(X;L),

where C(y) = (u,�1(·, y))L2(X;L) − ( f , 1(·, y))L2(X;L). Recall that

(G(·, y),�v)L2(X;L) + (B(·, y), v)L2(X;L) = v(y), (21)

where (x, y) �→ B(x, y) is the Bergman kernel of � (the integral kernel of the
orthogonal projection on Ker� in L2(X; L)). Thus,

(u − C(y)G(·, y),�v)L2(X;L) = ( f + C(y)B(·, y), v)L2(X;L) ∀v ∈ H2(X; L),

i.e. u − C(y)G(y, ·) ∈ Dom�∗ = Dom� = H2(X; L) and

�∗[u − C(y)G(·, y)] = f + C(y)B(·, y).

In particular, there is c(y) such that u(x) − C(y)G(x, y) = c(y)1(x, y) + ũ, where
ũ ∈ H2

0 (Ẋ; L) = Dom�̇∗ due to (19).

Now we describe the self-adjoint extensions of �̇.

Lemma 2.4 The operators �α (α ∈ (−π/2, π/2]) defined by (2),(3) are all the self-
adjoint extensions of �̇. The Friedrichs extension of �̇ is �0 ≡ �.

Proof According to (20), the map

u = Cu(y)h(y)G(·, y) + cu(y)1(·, y) + ũ �→
(
Cu(y), cu(y)

)

induces the isomorphismbetweenDom�̇∗/Dom�̇ and (�(X; L)/C∞
0 (Ẋ; L))2 � C

2.
The equation

S(u1/Dom�̇, u2/Dom�̇) :=(�̇∗u1, u2)L2(X;L) − (u1, �̇
∗u2)L2(X;L)

=[cu1hCu2 − Cu1hcu2 ](P). (22)

defines the complex symplectic (i.e. sesquilinear, skew-Hermitian, and non-
degenerate) form on the quotient space Dom�̇∗/Dom�̇.

123



  338 Page 8 of 23 A. Kokotov, D. Korikov

Recall that L ⊂ Dom�̇∗ is the domain of some self-adjoint extension of �̇ if
and only ifL /Dom�̇ is a Lagrangian subspace of Dom�̇∗/Dom�̇. In view of (22),
{G(·, y)/Dom�̇, 1(·, y)/Dom�̇} is the Darboux basis in Dom�̇∗/Dom�̇.

Let L = C(CG(·, y) + c1(·, y))/Dom�̇. In view of (22), L is isotropic (i.e., S
vanishes on L × L) only if cC = |C |2c/C ∈ R. If the last condition is satisfied, then
L is Lagrangian since each isotropic subspace can be extended to a Lagrangian one
and the dimension of a Lagrangian subspace is half that of the whole symplectic space.
Thus, all the Lagrangian subspaces in Dom�̇∗/Dom�̇ are given by

Lα = {u/Dom�̇ | [
cu/Cu

]
(P) = ctgα}

with α ∈ (−π/2, π/2]. Therefore, all the self-adjoint extensions of �̇ are given by
(2),(3). From (3) it easily follows that �0 = �.

Introduce the sesquilinear form

a(u, v) := (�̇u, v)L2(X;L) = (∂u, ∂v)L2(X;L⊗K )
=

∫

X
∂uhρ2∂vdS (u, v ∈ Dom�̇).

This form admits the closure, also denoted by a. It is well-known (see, e.g., [4],
Theorem 10.3.1) that the Friedrichs extension is the unique extension of �̇ whose
domain is contained in Dom a.

Note that the convergence in H1(X; L) implies the convergence in a-norm ‖u‖a =
(a(u, u))1/2.Using the same arguments as inLemma2.1, one can prove thatC∞

c (Ẋ; L)

is dense in H1(X; L). Thus, H1(X; L) belongs to Dom a. In particular, Dom� ≡
H2(X; L) ⊂ Dom a and, thus, � is Friedrichs.

In the rest of the section, we compare parametrizations (2), (3) and (6), (7) of pseudo-
laplacians.

Lemma 2.5 Formula (9) is valid.

Proof Let x be a holomorphic coordinate in a neighborhood of P and y = x(P). Let
χ be a cut-off function equal to 1 near P and let the support of χ be sufficiently small.
Introduce the section Gloc of L vanishing outside suppχ by the equation Gloc(x) =
χ(x)Gas , where

Gas(x) = − 1

2π
log|x − y| + ∂y logh(y)

4π
(x − y)log(x − y)

in the local coordinate x . In view of (1), we have

�Gloc(x) = −4ρ2∂∂Gloc(x) − 4ρ2(x)∂x logh(x)∂xGloc(x) = [�,χ ]Gas(x)+
+ χ(x)ρ2(x)

∂x logh(x) − ∂y logh(y) − ∂x logh(x)∂y logh(y)(x − y)

π(x − y)
= O(1),

x → y, x �= y.
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Therefore, �[Gloc − G(·, y)] ∈ L2(X; L) in the sense of distributions. Due to the
equivalence of norms (18) and (17), we have Gloc − G(·, y) ∈ H2(X; L). Now,
formulas (8) and (19) imply

Gloc = G(·, y) − 1(·, y)[m(P) + ρ(y)/2π ] + G̃loc, G̃loc ∈ Dom �̇.

Then any section u given by (7) can be represented as

u = G(·, y)sinβ + 1(·, y)[cosβ − (m(P) + ρ(y)/2π)sinβ] + ũ, ũ ∈ Dom �̇.

In particular, u ∈ Dom�α where α is related to β via (9).

3 Comparison Formulas for Determinants

Comparison formula for the resolvents of 1 and 1˛. As mentioned in the intro-
duction, we assume that Ker� = {0}. Suppose that λ ∈ C is not an eigenvalue of �

and α ∈ (−π/2, 0) ∪ (0, π/2). Let (� − λ)u = f . We search for the solution uα to
(�α − λ)uα = f of the form

uα = u + d(y)h(y)Rλ(·, y), (23)

where d ∈ �(X; L), y = y(P) is a holomorphic coordinate of P , and (x, y) �→
Rλ(x, y) is the resolvent kernel of �. Since (� − λ)Rλ(·, y) = 0 outside P , we have
(�̇∗−λ)uα = f . In view ofHilbert’s identity Rλ(·, y)−G(·, y) = λ(�−λ)−1G(·, y),
we obtain

h(y)Rλ(·, y) = h(y)G(·, y) + T (λ)1(·, y) + R̃λ(·, y), (24)

where R̃λ(·, y) ∈ Dom �̇ and the number T (λ) is called the scattering coefficient.
Note that T (0) = 0. As a corollary of (24), we have

uα = d(y)h(y)G(·, y) + [u(y) + d(y)T (λ)]1(·, y) + ũα,

where ũα ∈ Dom �̇. Comparing the last formula with (3), we conclude that uα ∈
Dom�α if and only if

d(y) = u(y)

ctgα − T (λ)
= ( f , Rλ(·, y))L2(X;L)

ctgα − T (λ)
. (25)

Since Rλ is the resolvent kernel of �, we have u(y) = ( f , Rλ(y, ·))L2(X;L) =
( f , Rλ(·, y))L2(X;L). Therefore, formulas (23) and (25) imply

[(�α − λ)−1 − (� − λ)−1] f = uα − u = ( f , Rλ(·, y))L2(X;L)h(y)Rλ(·, y)
ctgα − T (λ)

(26)

(here the denominator in the right-hand side equals zero if and only ifλ is an eigenvalue
of �α).
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Note that, in the right-hand side of (26), the one-dimensional operator acts on f .
Then

Tr[(�α − λ)−1 − (� − λ)−1] = h(y)(Rλ(·, y), Rλ(·, y))L2(X ,L)

ctgα − T (λ)
. (27)

Since (�α − i)−1 − (� − i)−1 is a one-dimensional operator, the essential spectra
of �α and � coincide (see Theorem 9.1.4, [4]). Since the spectrum of � is discrete,
the spectrum of any �α is also discrete. Also, since � is the Friedrichs extension of
�̇, we have �α < � for α ∈ (0, π) (see Corollary 10.3.2, [4]) and, since the spectra
of the operators �α and � are discrete, their exact lower bounds obey m� > m�α .
In view of Theorems 10.3.7 and 10.3.8, [4], there is exactly one eigenvalue λ1(�α)

which does not belong to [m�,+∞). In particular, each �α is semi-bounded.
Differentiating the equation (� − λ)Rλ(·, y) = 0 in Ẋ , one obtains (� −

λ)∂λRλ(·, y) = Rλ(·, y) while (24) implies

h(y)∂λRλ(·, y) = ∂λT (λ)1(·, y) + W (·, y),

where W (·, y) ∈ Dom �̇. Hence

∂λT (λ) = h(y)∂λRλ(y, y) = h(y)(Rλ(·, y), Rλ(·, y))L2(X;L).

Now (27) takes the form

Tr[(�α − λ)−1 − (� − λ)−1] = −∂λlog
(
ctgα − T (λ)

)
. (28)

Comparison formula for�(s|1) and�(s|1˛). Suppose that Ker�α = {0}.We define
λ−s := exp(−slogλ), where the cut for the logarithm is a simple path�cut going from
λ = −∞ to λ = 0 which does not contain eigenvalues of � and �α . We assume that
�cut coincides with the semi-axis (−∞, a0] outside the semi-plane �λ > a0 (where
a0 < min{m�,m�α }) and with the semi-axis λ < 0 in a small neighborhood of λ = 0.
For �s > 0 and A = � or A = �α , we have

A−s = 1

2π i

∫

�

(A − μ)−1μ−sdμ (� := ∂
(
C\(γcut ∪Uε)

)
). (29)

where � is the boundary of the domain obtained fromC by deleting �cut and a small
ε-neighborhood Uε of μ = 0. Since the difference (�α − λ)−1 − (� − λ)−1 is a
one-dimensional operator for any λ, the integrals of it converge in both operator and
trace norms. Then (29) and (28) imply

ζ(s|�) − ζ(s|�α) =
∫

�
∂μlog

(
ctgα − T (μ)

)μ−sdμ

2π i
=

= s J0(s) + π−1sin(πs)
[
e−π is J−∞(s) − log

(
ctgα − T (−ε)

)
ε−s].

(30)
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where

J0(s) =
∫

|μ|=ε

log
(
ctgα − T (μ)

)μ−(s+1)dμ

2π i

is an entire function of s and

J−∞(s) =
∫

�cut\Uε

∂μlog
(
ctgα − T (μ)

)
μ−sdμ.

To study the analyticity properties of J−∞, we derive the asymptotics of T (λ) as
λ → −∞. To this end, let us recall the following asymptotics of the resolvent kernel
(see formulas (2.32) on p.38 and (2.25) on p.34, [8])

h(y)Rλ(x, y)+ 1

2π
d(x, y) = 1

4π

[
a0−log(|λ|+1)+ a−1(y)

(|λ| + 1)

]
+ R̃λ(x, y) (x → y).

(31)
Here y = x(P) and the remainder R̃λ(x, y) is continuous at x = y and obeys the
(admitting differentiation) estimate R̃λ(y, y|�) = O(λ−2). The coefficients in (31)
are given by

a0 = 2(log2 − γ ), a−1 = 1 + R + K/3,

where K = 4ρ2∂∂logρ and R = −2ρ2∂∂logh are the scalar curvatures of the metrics
ρ−2|dz|2 and h. Comparing formulas (31), (8) and (24), we obtain

T (λ) = h(y)[Rλ − G](y, y) = 1

4π

[
a0 − log(|λ| + 1) + a−1(y)

(|λ| + 1)

]
− m(P) + O(λ−2).

Therefore,

∂λlog
(
ctgα − T (λ)

) = ∂λT (λ)

T (λ) − ctgα
= −1

|λ|(q + log|λ|) + q̃(λ),

where q = 4π [m(P) + ctgα] − a0 and q̃(λ) = O(|λ|−2) (λ → −∞). Thus,

−e−π is J−∞(s) = e−π is
∫

�cut\Uε

μ−sdμ

|μ|(q + log|μ|) + J̃−∞(s).

The remainder

J̃−∞(s) = −e−π is
∫

�cut\Uε

μ−s q̃(μ)dμ
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is analytic for �s > −1. In the last two formulas, one can replace the integration
contour in the right-hand sides by (−∞,−ε) (thenμ−sdμ = −|μ|−seπ isd|μ|). Thus,

−e−π is J−∞(s) − J̃−∞(s) =
∫ +∞

ε

t−(s+1)dt

logt + q
=

= esq
∫ +∞

s(logε+q)

e−pdp

p
= −esqEi(−s(logε + q)),

where p = s(logt + q) and Ei denotes the exponential integral (cf. [12]). Now (30)
takes the form

ζ(s|�) − ζ(s|�α) = s J0(s)+
+π−1sin(πs)

[
esqEi(−s(logε + q)) − J̃−∞(s) − log

(
ctgα − T (−ε)

)
ε−s

]
.

In view of the series representation

Ei(z) = logz + γ + z + O(z2) (z → 0, argz ∈ [−π, π)),

we have

[ζ(s|�α) + slogs] − ζ(s|�) =
= −s

[
log(−(logε + q)) + γ +

∫ −ε

−∞
q̃(μ)dμ + log

ctgα − T (0)

ctgα − T (−ε)

]
+ õ2(s),

where s �→ õ2(s) is analytic near s = 0 and s = 0 is a zero of õ2 of order 2.
Thus, s �→ ζ(s|�α) has logarithmic singularity at s = 0 and one needs to apply
regularization (4). Then the regularized zeta function s �→ ζ (r)(s|�α) is analytic near
s = 0, and

−∂s[ζ (r)(s|�α) − ζ(s|�)]∣∣s=0 = log(−(logε + q)) + γ+
+

∫ −ε

−∞
q̃(μ)dμ + log

ctgα − T (0)

ctgα − T (−ε)

(32)

for sufficiently small ε > 0. Note that the left-hand side of (32) is independent of ε

while the right-hand side is real-analytic in ε ∈ (0,+∞). Then the right-hand side
is independent of ε ∈ (0,+∞). Sending ε to infinity and taking into account that
T (0) = 0, we arrive at

−∂s[ζ (r)(s|�α) − ζ(s|�)]∣∣s=0 = log(−4πctgα) + γ. (33)

Comparison formula (5) follows from (33) and definition (4) of the regularized
determinant det(r)�α . Formula (10) follows from (5) and Lemma 2.5.
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4 Explicit Formulas for RobinMass

4.1 Derivation of Formula (12)

Choose a canonical basis {ai , b j }gi, j=1 of cycles; let �v = (v1, . . . , vg)
t be the basis of

Abelian differentials on X normalized with respect to {ai , b j }gi, j=1, and let B be the
matrix of b-periods of X (see, e.g., [10], p. 231). Denote byA(D) the Abel transform
of the divisorD with the basepoint Q; thenA(y− x) = ∫ y

x �v. LetK denote the vector
of Riemann constants, associated with the same basepoint Q.

From now on, we assume that L obeys (11). Then L � � ⊗ χ , where � is the
‘basic’ spinor bundle obeying A(�) = −K while χ is a unitary holomorphic line
bundle (see Example 2.3 on pp.28,29, [8]).

The Szegö kernel S is defined as a section of L⊗̂K L−1 given by

S(x, y) = −4πh(y)∂yG(x, y) (34)

(see p.25, [8]). The reversal of (34) is

G(x, y) = 1

4π2

∫

X
S(x, z)h−1(z)S(y, z)d̂z (35)

(see (2.6), [8]), where d̂z = dz∧dz/2i . In view of conditions (11), the Szegö kernel is
independent of the choice of metrics and coincides with integral kernel of the operator

−π∂
−1

. Moreover, it is biholomorphic outside the diagonal x = y and obeys the
asymptotics

S(x, y) = 1

y − x
+ O(1) (|x − y| → 0) (36)

(see p. 25-29, [8]). In addition, the following explicit formula for the Szegö kernel
holds

S(x, y) = θ [χ ](A(y − x))

θ [χ ](0)E(x, y)
, (37)

where E(x, y) is the prime-form of X and θ [χ ](·) is the theta-function (defined in [8],
(1.9)).

Formulas (35) and (37) provide an explicit expression for the Green function G.
To obtain explicit formula (12) for m(y), one needs a regularization of the (diverging
at x = y) integral in the right-hand side of (35). To this end, let us introduce the
symmetric real-valued function

(x, y) �→ �(x, y) = − 1

4π
log

[
F(x, y)

ρ(x)ρ(y)

]
, (38)

on X × X , where F is given by (13). Due to the asymptotics (see [8], (1.3))

E(x, y)

x − y
= 1 + O(|x − y|2),
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formulas (38) and (13) imply

�(x, y) = − 1

2π
logd(x, y)+O(|x − y|), 4π∂y�(x, y) = 1

x − y
+O(1) (|x − y| → 0).

(39)
Then

m(y) = lim
x→y

(
h(y)G(x, y) − �(x, y)

)
. (40)

Let x �= y and let Xε(x, y) be the domain obtained by removing ε-neighborhoods
(in the metric ρ−2|dz|2) of x and y. In view of the Stokes theorem and (39), we have

∫

Xε (x,y)

4[∂z∂z�(x, z)�(z, y) + ∂z�(x, z) ∂z�(z, y)]d̂z =

=
∫

∂Xε (x,y)

[�(x, y)

x − z
+ O(1) + O

(∣∣log|z − y|∣∣)
] dz

2π i
= �(x, y) + o(1).

(41)

Since the prime-form E is biholomorphic, we have ∂z∂z log|E(x, z)|2 = 0 (x �= z).
Then formulas (38) and (13) imply

4∂z∂z�(x, z) = ∂z∂z

[ 1
π
logρ(z) − 1

2
( �A − �A)t (�B)−1( �A − �A)

]

= K (z)

4πρ2(z)
+ �v(z)

t
(�B)−1�v(z) (42)

for z �= x , where

�A =
∫ x

z
�v, ∂z �A = 0, ∂z �A = −�v(z)

and K = 4ρ2∂∂logρ is the Gaussian curvature of the metric ρ−2|dz|2. Now passing
to the limit ε → 0 in (41) yields

�(x, y) =
∫

X

4∂z�(x, z) ∂z�(z, y)d̂z +
∫

X

[ K (z)

4πρ2(z)
+ �v(z)

t
(�B)−1�v(z)

]
�(z, y)d̂z.

(43)

Substituting (35) and (43) into (40), one obtains

m(y) = lim
x→y

[
1

4π2

∫

X

[
S(x, z)S(y, z)

h(y)

h(z)
− 16π2∂z�(x, z) ∂z�(z, y)

]
d̂z

]
−

−
∫

X

[
K (z)

4πρ2(z)
+ �v(z)

t
(�B)−1�v(z)

]
�(z, y)d̂z.

(44)
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In view of asymptotics (36) and (39), the section

(y, z) �→ |S(y, z)|2 h(y)

h(z)
− 16π2|∂z�(y, z)|2

of 1⊗̂KK is integrable in z ∈ X . Therefore, one can interchange passing to the limit
and the integration in (44). As a result, one arrives at

m(y) = 1

4π2

∫

X

[
|S(y, z)|2 h(y)

h(z)
− 16π2|∂z�(y, z)|2

]
d̂z−

−
∫

X

[
K (z)

4πρ2(z)
+ �v(z)

t
(�B)−1�v(z)

]
�(z, y)d̂z.

(45)

To derive (12), it remains to substitute (37), (38) and (13) into (45).

4.2 Relation Between the Robin Masses for Conformally Equivalent Metrics

Let ρ′−2|dz|2 and h′ and ρ−2|dz|2 and h be two pairs of metrics on the Riemann
surface X and the holmorphic line bundle L , respectively. Denote by G ′ and m′ the
Green function and the Robin mass for the Laplacian �′ associated with the surface
(X , ρ′−2) and the hermitian bundle (L, h′).

Suppose that L satisfies (11). Then Szegö kernel (34) is independent of the choice
of conformal metrics and formulas (34) and (35) remain valid after replacing G, h by
G ′, h′. Then

G ′(x, y) = 1

4π2

∫

X
S(x, z)h′−1(z)S(y, z)d̂z = −1

π

∫

X

h

h′ (z)∂zG(x, z)S(y, z)d̂z.

Since S(y, z) is biholomorphic outside y = z, we have

G ′(x, y) = 1

π

∫

X

[
∂z

h

h′
]
(z)G(x, z)S(y, z)d̂z − 1

π

∫

X
∂z

[ h

h′ (z)G(x, z)S(y, z)
]
d̂z.

In view of the Stokes theorem and asymptotics (36) and (8), the last integral in the
right-hand side is equal to πh(y)h′−1(y)G(x, y). Thus,

h′(y)G ′(x, y) − h(y)G(x, y) = h′(y)
π

∫

X

[
∂z

h

h′
]
(z)G(x, z)S(y, z)d̂z. (46)

In view of (8), we have

h′(y)G ′(x, y) = − 1

2π
log

[|x − y|ρ′−1(y)
] + m′(y) + o(1),

h(y)G(x, y) = − 1

2π
log

[|x − y|ρ−1(y)
] + m(y) + o(1)
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as x → y. Then passing to the limit as x → y in (46) yields the comparison formula

m′(y) − m(y) = 1

2π
log

[ ρ(y)

ρ′(y)

]
+ h′(y)

π

∫

X

[
∂z

h

h′
]
(z)G(y, z)S(y, z)d̂z =

= 1

2π
log

[ ρ(y)

ρ′(y)

]
− 4h′(y)

∫

X

[
∂z

h

h′
]
(z)G(y, z)h(z)∂zG(z, y)d̂z

(47)
(cf. p.203, [14]).

4.3 Examples

The Robin mass for the spinor bundle on the round sphere. Let x and x ′ = 1/x be
the system of holomorphic coordinates on the Riemann sphere C and L = C = √

K
be the (unique up to isomorphism) spinor bundle on C. Then its Szegö kernel is given
by S(x, y) = (y − x)−1√dxdy. Note that the prime-form on C is just E(x, y) =
(x − y)/

√
dxdy.

The round metric ρ−2|dx |2 on C is given by ρ(x) = 1 + |x |2; then its Gaussian
curvature is constant K = 4. The metric in the spinor bundleC is given by h = ρ. The
Green function G of the spinor Laplacian � on the sphere C is invariant with respect
to rotations. Therefore, the Robin mass m is constant on C.

In contrast to (12), formula (45) is still valid for the case g = 0 and it takes the
form

4π2m =
∫

C

[
|S(0, z)|2 h(0)

h(z)
− 16π2|∂z�(0, z)|2 − πK

ρ2(z)
�(z, 0)

]
d̂z =

=
[
�(x, y) = −1

4π
log

[ |x − y|2
ρ(x)ρ(y)

]
, |z|2 = t

]
= π

+∞∫

0

1 + log[t/(1 + t)]
(1 + t)2

dt = 0

Comparison of the last formula with the explicit expression

h(0)G(x, 0) = G(x, 0) = 1

4π
log[1 + |x |−2] = − 1

2π
log|x | + O(|x |2)

for the spinor Green function G provides a simple cross-check of (45).

The Robin masses for spinor bundles on flat tori. Let T be the torus C/(Z + τZ)

with �τ > 0. Let z ∈ C be a coordinate of the point z/(Z + τZ) of T. The metric on
T is |dz|2; then the area of T is �τ .

The sections f of any line bundle L over T can be considered as a functions on the
universal cover C of T obeying the quasi-periodicity conditions

f (z + 1) = s1(z) f (z), f (z + τ) = sτ (x) f (z), (48)
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where the automorphy factors s1, sτ are invariant under the cover transformations
Z + τZ. There are 4 non-isomorphic spinor bundles Cs1,sτ where s1, sτ = ±1.

The metric of Cs1,sτ is given by h = 1. The the spinor Laplacians are given
by � = ∂z∂z in local coordinates. Note that the kernel of � is non-trivial only for
C = C+,+ = 1. The Greens functions for Laplacians on Cs1,sτ are invariant with
respect to translations of torus: G(x, y) = G(x − y). Then the the Robin masses
corresponding to Cs1,sτ are constant on T. The Green function for C+,+ = 1 is given
by

G(z|τ) = − 1

2π
log

∣∣
∣∣
θ1(z|τ)

θ ′
1(0|τ)

∣∣
∣∣ + (�z)2

2�τ
.

In view of (48), the Green function for C+,−,C−,+,C−,− are given by

G+,−(z|τ) = G(z|2τ) − G(z − τ |2τ) = 1

2π
log

∣∣∣∣
θ1(z − τ |2τ)

θ1(z|2τ)

∣∣∣∣ + �(2z − τ)

4
,

G−,+(z|τ) = G
( z
2

∣
∣∣
τ

2

)
− G

( z − 1

2

∣
∣∣
τ

2

)
= 1

2π
log

∣∣
∣∣∣
θ1(

z−1
2 | τ

2 )

θ1(
z
2 | τ

2 )

∣∣
∣∣∣
,

G−,−(z|τ) = G
( z
2

∣∣∣τ
)

− G
( z − 1

2

∣∣∣τ
)

− G
( z − τ

2

∣∣∣τ
)

+ G
( z − 1 − τ

2

∣∣∣τ
)

=

= 1

2π
log

∣
∣∣∣∣
θ1(

z−1
2 |τ)θ1(

z−τ
2 |τ)

θ1(
z
2 |τ)θ1(

z−1−τ
2 |τ)

∣
∣∣∣∣
,

respectively. Therefore,

m+,+ = 0, m−,− = 1

2π
log

∣
∣∣∣∣
2θ1( 12 |τ)θ1(

τ
2 |τ)

θ1(0|τ)θ1(
1+τ
2 |τ)

∣
∣∣∣∣
,

m+,− = 1

2π
log

∣∣
∣∣
θ1(τ |2τ)

θ ′
1(0|2τ)

∣∣
∣∣ − �τ

4
, m−,+ = 1

2π
log

∣∣∣
∣∣
2θ1( 12 | τ

2 )

θ ′
1(0| τ

2 )

∣∣∣
∣∣
.

5 On Steiner’s Relation Between Regularized �(1|1) and the Robin
Mass

For the case of the trivial bundle L , relation (16) between regularized ζ(1|�) (given by
(15)) and the Robin mass is proved in Proposition 2, [17]. In this section, we provide a
straightforward generalization of this result to the case of arbitrary L . For simplicity,
we assume that Ker� = {0} (if Ker� �= {0}, the zero modes are excluded in the
definition of ζ(s|�). In this case, K(x, y, t) in the formulas below should be replaced
by K(x, y, t) − B(x, y), where B is the Bergman kernel defined after (21)).

Let x, y, t �→ K(x, y, t) be the heat kernel associated with the equation (∂t +
�)u(x, t) = 0. According to Theorem 2.5 and formulas (2.24) and (2.25) on p.34,
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[8], K(x, y, t) admits the asymptotics

K(x, y, t)h(y) = exp
( − r2/4t

)

4π t

[
1 + ψ0(x, y)

] + �1(x, y, t), (49)

where r = d(x, y) and

ψ0(x, y) = [∂y logh](y)(y − x) + [
(∂y logh)2 − ∂2y h/2h

]
(y − x)2+

+ [
K (y)/3 + R(y)

]|y − x |2/4ρ2(y) + O(|x − y|3) = O(r),

while the remainder �1(x, y, t) is bounded uniformly in x, y ∈ X and t ≥ 0.
The kernels x, y �→ G(s)(x, y) of the operators �−s are related to the heat kernel

via

h(y)G(s)(x, y) = h(y)

�(s)

∫ +∞

0
K(x, y, t)t s−1dt =

= 1 + ψ0(x, y)

4π�(s)

∫ 1

0
exp

( − r2/4t
)
t s−2dt + K1(s, x, y),

where

K1(s, x, y) = h(y)

�(s)

( ∫ +∞

1
K(x, y, t)t s−1dt +

∫ 1

0
�1(x, y, t)t

s−1dt
)
.

In view of (49), G(s)(x, y) is well defined for any x, y ∈ X for �s > 1 and for any
s ∈ C for x �= y. Note that K1(s, x, y) is bounded in x, y ∈ X and analytic in s
near s = 1. The integral

∫ 1
0 exp

( − r2/4t
)
t s−2dt is analytic with respect to r ,s and

is well-defined for any s ∈ C and �r2 > 0. Denote u := r2/4t . For r > 0 and
1/2 < �s < 1, we have

1∫

0

exp
( − r2/4t

)
t s−2dt = (r2/4)s−1

( +∞∫

0

−
r2/4∫

0

)
e−uu−sdu =

= (r2/4)s−1
(
�(1 − s) −

∫ r2/4

0

(
e−u − 1

)
u−sdu −

∫ r2/4

0
u−sdu

)
=

= (r2/4)s−1�(1 − s) − 1

1 − s
− (r2/4)s−1

∫ r2/4

0

(
e−u − 1

)
u−sdu.

(50)

Now note that the right-hand side of (50) is well-defined and analytic in a punctured
neighborhood of s = 1 (even if �s > 1) for r > 0. If �s > 1, then the left-hand side
(and, therefore, the right-hand side) of (50) is continuous for r ≥ 0. As a corollary,
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we have

h(y)G(s)(x, y) = 1

4π�(s)

[
(r2/4)s−1�(1− s)− 1

1 − s

]
+K0(s, x, y)+K1(s, x, y),

(51)
where

K0(s, x, y) = ψ0(x, y)

4π�(s)

∫ 1

0
exp

( − r2/4t
)
ts−2dt − (r2/4)s−1

4π�(s)

∫ r2/4

0

(
e−u − 1

)
u−sdu.

Here

• the equality is valid for r > 0 and any s close to s = 1;
• for �s > 1, the left-hand side is continuous at x = y;
• for x �= y, the left-hand side is analytic in s ∈ C;
• K1(s, x, y) is analytic in s near s = 1 for any x, y ∈ X and is continuous in

x, y ∈ X ;
• K0(s, x, y) is analytic in s ∈ C for x �= y and, due to (50), K0(s, x, y) → 0 as
r → 0 uniformly with respect to s close to s = 1 (including s = 1).

Let ζ (r)(1|�) is given by (15). In view of (51) and the identity

lim
s→1

1 − 1/�(s)

1 − s
= γ,

we have

ζ (r)(1|�) = lim
s→1�s>1

∫

X
lim
x→y

(
h(x)G(s)(y, x) − 1

4π(s − 1)

)
dSρ(y) =

=
∫

X
(K1(1, y, y) + γ /4π)dSρ(y).

(52)

At the same time, we have

m(y) = lim
x→y

[
h(y)G(x, y) + 1

2π
logr

] = lim
x→y

[
lim
s→1�s>1

[h(y)G(s)(x, y)] + 1

2π
logr

]
=

= lim
x→y

[
lim
s→1�s>1

[ 1

4π�(s)

[
(r2/4)s−1�(1 − s) − 1

1 − s

]]
+ 1

2π
logr

]
+ K1(y, y, 1) =

= 2log2 − γ

4π
+ K1(y, y, 1)

(53)
due to the asymptotics

�(z) − 1

z
= −γ + O(z), z → 0.

Comparing (52) with (53), one arrives at (16).
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6 Evolution of the Scalar RobinMass Under Ricci Flow

Calculation of the scalar Robin mass. Denote by m(sc) the Robin mass associated
with scalar Laplacian �(sc) = −4ρ2∂∂ on X . In what follows, we denote by

〈 f 〉 = 1

Area(X; ρ)

∫

X

f (x)dSρ(x)

the average value of the function f on (X , ρ).
Integrating both sides of (14) over X and taking into account that the scalar Green

function G(sc)(x, ·) is L2-orthogonal to constants, we obtain

m(sc)(x) + 〈m(sc)〉 = − 2

Area(X; ρ)

∫

X

�(x, y)dSρ(y),

〈m(sc)〉 = − 1

Area(X; ρ)2

∫

X

∫

X

�(x, y)dSρ(y)dSρ(x),
(54)

where � is given by (38). Comparing the last two formulas yields

m(sc)(x) = 1

Area(X; ρ)2

∫

X

∫

X

�(x, y)dSρ(y)dSρ(x) − 2

Area(X; ρ)

∫

X

�(x, y)dSρ(y).

(55)

In addition, from (14) and (42) it easily follows that

�(sc)m(sc) = 2�(sc)[G(sc)(x, ·) − �(x, ·)] = − 2

Area(X , ρ)
+ K

2π
+ 2ρ2�vt (�B)−1�v (56)

(cf. Proposition 2.3, [15] for the case of the Bergman metric).

Evolution of the average Robin mass under Ricci flow: scalar case. Consider the
normalized Ricci flow t �→ ρ−2

t |dz|2 of the metrics on X ,

ρ̇t

ρt
= Kt − 〈Kt 〉, (57)

where Kt = [4ρ2∂∂logρ]t is the Gaussian curvature and

〈Kt 〉 = 1

At

∫

X

KtdSρ, At = Area(X; ρt ).

It is well known that Ricci flow (57) preserves the surface area At = A. In view
of the Gauss-Bonnet theorem, we have A〈Kt 〉 = 2πχ(X), where χ(X) is the Euler
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characteristic of X . As is well known (see [6, 11]), the metric ρt converges to the
metric of constant curvature K∞ = 2πχ(X)A−1 as t → +∞.

Denote by m(sc)
t the Robin mass associated with the scalar Laplacian �

(sc)
t =

−4ρ2
t ∂∂ on X . Differentiating both sides of (54) with respect to t , we obtain

A2∂t 〈m(sc)
t 〉 =

∫

X

∫

X

[
2�t (x, y)

[ ρ̇t (x)

ρt (x)
+ ρ̇t (y)

ρt (y)

]
− �̇t (x, y)

]
dSρt (y)dSρt (x).

(58)
In view of (38) and the fact that the section F (given by (13)) in conformally invariant,
we have

�̇t (x, y) = 1

4π

[ ρ̇t (x)

ρt (x)
+ ρ̇t (y)

ρt (y)

]
.

Then

∫

X

∫

X

�̇t (x, y)dSρt (y)dSρt (x) = 1

2π

∫

X

∫

X

ρ̇t (x)

ρt (x)
dSρt (y)dSρt (x) = − At Ȧt

4π
= 0

and formulas (58), (57), (54) and the symmetry of �(x, y) = �(y, x) imply

1

2
∂t 〈m(sc)

t 〉 = 2
∫

X

(Kt (x) − K∞)

∫

X

�t (x, y)
dSρt (y)dSρt (x)

A2 =

=
∫

X

(
K∞ − Kt (x)

)(
m(sc)

t (x) + 〈m(sc)
t 〉)dSρt (x)

A

= K∞〈m(sc)
t 〉 −

∫

X

Ktm
(sc)
t

dSρt

A
.

Due to (56), we have

(
∂t − 2K∞ + 8π

A

)
〈m(sc)

t 〉 = 8π

A

∫

X

ρ2
t [�v

t
(�B)−1�v]m(sc)

t dSρt

− 4π

A

∫

X

�(sc)m(sc) · m(sc)
t dSρt . (59)

If X is the Riemann sphere S then the first integral in the right-hand side is absent and
K∞ = 4π/A. Then the last formula can be rewritten as

∂t 〈m(sc)
t 〉 = −4π

A

∫

S

�(sc)m(sc)
t · m(sc)

t dSρt .
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Since the scalar Laplacian is non-negative and Ker�(sc) = {const}, we have

∂t 〈m(sc)
t 〉 ≤ 0,

where the equality is attained only if m(sc)
t is constant on S. Thus, if the area of S

is constant, then 〈m(sc)〉 (as a functional on the space of smooth metrics with given
area on S) attains its global minimum at the metric of constant curvature. Indeed, let
�(sc),0 be the laplacian on S corresponding to any metric ρ−2

0 |dz|2 of non-constant
curvature. Introduce the the family of laplacians t �→ �(sc),t (t ≥ 0) corresponding
to Ricci flow (57). Then the function t �→ 〈m(sc),t 〉 decreases. Since the Ricci flow
(57) converges to the metric ρ−2∞ |dz|2 of constant curvature on S, formula (55) implies
〈m(sc),t 〉 → 〈m(sc),∞〉, where �(sc),∞ is the laplacian corresponding to the metrics
ρ−2∞ |dz|2 of constant curvature. In particular, we obtain 〈m(sc),0〉 ≥ 〈m(sc),∞〉.

Thus, by means of (16), we recover the well-known result of Morpurgo (see [13],
formula (4)) stating that ζ (r)(1|�(sc)) (as a functional on the space of smooth metrics
with given area on S) attains minimum at the metric of constant curvature on S.
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16. Sěba, P.: Awave chaos in singular quantum billiard. Phys. Rev. Lett. 64(16), 1855–1858 (1990). https://
doi.org/10.1103/PhysRevLett.64.1855

17. Steiner, J.: A geometrical mass and its extremal properties for metrics on S2. Duke Math. J. 129(1),
63–86 (2005). https://doi.org/10.1215/S0012-7094-04-12913-6

18. Verlinde, E., Verlinde, H.: Chiral bosonization, determinants and the string partition function. Nucl.
Phys. B 288, 357–396 (1987). https://doi.org/10.1016/0550-3213(87)90219-7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1090/conm/071/954419
https://doi.org/10.1090/conm/071/954419
https://doi.org/10.1090/conm/201/02611
https://doi.org/10.1090/conm/201/02611
https://doi.org/10.1007/s00220-008-0722-z
https://doi.org/10.1103/PhysRevLett.64.1855
https://doi.org/10.1103/PhysRevLett.64.1855
https://doi.org/10.1215/S0012-7094-04-12913-6
https://doi.org/10.1016/0550-3213(87)90219-7

	Determinants of Pseudo-laplacians and ζ(reg)(1) for Spinor Bundles Over Riemann Surfaces
	Abstract
	1 Introduction
	2 Pseudo-laplacians
	3 Comparison Formulas for Determinants
	4 Explicit Formulas for Robin Mass
	4.1 Derivation of Formula (12)
	4.2 Relation Between the Robin Masses for Conformally Equivalent Metrics
	4.3 Examples

	5 On Steiner's Relation Between Regularized ζ(1|Δ) and the Robin Mass
	6 Evolution of the Scalar Robin Mass Under Ricci Flow
	Acknowledgements
	References


