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Course outlines

� Unbounded operators: general facts and definitions, first examples.

(Domain of definition, Extensions, polarization identity, graphs, closed operators,
adjoint operator, symmetric and self-adjoint operators, graph technique, self-
adjointness of A∗A, i d

dx
on bounded interval, essentially self-adjoint operators,

operator of the Dirichlet problem on the interval, harmonic oscillator, operator of
the multiplication by a measurable function)

� Friedrichs extension

� Resolvent, Resolvent of a self-adjoint operator, Herglotz theorem, Spectral theorem
(Wintner’s proof following Berezin and Shubin).

� Kato-Rellich theorem and and self-adjointness of Schroedinger operator (hydrogen,
etc).

� Theory of self-adjoint extensions, deficiency indices, von Neumann formulae

Two additional topics taken from Winter 2015 lecture notes

1. Pseudo-Laplacians in Rd.

2. Comparison of self-adjoint extensions: Krein formula for resolvents.

Appendix

1. Compact self-adjoint operators

Miscellanea

1. Zorn Lemma

2. UBP, compact operators

3. Vishik-Lax-Milgram Theorem

4. A Lemma on generalized functions (needed for the proof of Sears criterion in
Berezin-Shubin).
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1 General facts about unbounded operators (Dry

Desert)

LECTURE 1

1.1 Domains of definition, extensions, polarization identity

H - a SEPARABLE (avoiding Zorn stuff, just a technical simplification) COMPLEX
(real theory is a bit special, although also interesting) Hilbert space.

(·, ·) - linear w. r. t. THE FIRST argument, anti-linear w. r. t. THE SECOND
argument.

Physicists and some authors use the opposite agreement.
In quantum mechanics textbooks: (·, ·) =< ·, · >, (< |= bra; | > = (c)ket vectors.

Ket-vectors = vectors; bra-vectors = linear functionals.
Riesz theorem: l(x) = (x, vl) for a linear functional; for physicists and authors close

to physics l(x) = (vl, x) =< vl|x >.
Let

A : H → H

be a linear operator with DENSE D(A) (domain (of definition)).

Remark:For all operators in this course D(A) is always a linear subspace of H and
is always dense (i. e. D(A) = H).

Clearly, if A is bounded then it can be extended to the whole H. So, typically, in
this course A is unbounded.

Example: I := {x ∈ R : 0 ≤ x ≤ 1}; H=L2(I); A = d
dx
; D(A) = C1(I).

Exercise 1: Prove that A is unbounded.
Hint: consider normalized tn.

Example-advertisement: Schroedinger operator −∆+q(x) (say, in L2(R3)). The-
ory is as large and deep as mathematics as a whole.

Work with unbounded operators requires a lot of care because of troubles with do-
mains.

D(A+B) = D(A) ∩D(B)

D(AB) = {x ∈ D(B) : Bx ∈ D(A)}

Definition 1. Extension: A ⊆ B iff D(A) ⊆ D(B) and B|D(A) = A.

Be careful: A(B + C) ̸= AB + AC (example: C = −B)
Exercise 2: Prove

AB + AC ⊆ A(B + C)
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but
(B + C)A = BA+ CA

Let x, y ∈ D(A). Then one has polarization identity:

(Ax, y) =
1

4

∑
ϵ=±1,±i

ϵ (A(x+ ϵy), (x+ ϵy))

(Remark: mind that for us (·, ·) is anti-linear w. r. t. the second argument. For
physicist’s choice the r. h. s. should be changed to conjugate - aesthetically worse!! -
and that is one of the most important reasons to make mathematician’s choice.)

Exercise: Prove via direct calculation. Once in your life you have to do that
(similarly to the Jacobi identity for [a, [b, c]] with [a, b] = ab− ba!)

Meaning: sesquilinear form is defined by quadratic one.

Exercise 3. (∀x ∈ D(A) (Ax, x) ∈ R) =⇒ (∀x, y ∈ D(A) (Ax, y) = (x,Ay))
(symmetry).

1.2 Graphs, Closed operators

Graph of A:
Γ(A) := {[x,Ax] ∈ H ×H;x ∈ D(A)}

Let x, y ∈ D(A). Define

⟨⟨x, y⟩⟩ := (x, y) + (Ax,Ay)

Graph norm:
|||x||| = ⟨⟨x, y⟩⟩1/2

The following three statements are equivalent:

� Γ(A) is closed in H ×H

� D(A) ∋ xn → x0; Axn → y0 =⇒ x0 ∈ D(A) and Ax0 = y0

� D(A) is Hilbert space w. r. t. graph norm

If any of these three facts holds true then operator A is called closed.

Definition 2. A is closable if the closure, Γ(A), of Γ(A) is the graph of a linear operator.

(i. e. [x, y1], [x, y2] ∈ Γ(A) =⇒ y1 = y2; Γ(A) (as well as Γ(A)) is a linear space;
therefore, this is equivalent to [0, y] ∈ Γ(A) =⇒ y = 0 - prove!)

Example. L2(I), A : f 7→ f(1) ∈ L2(I); D(A) = C(I). Non-closable. [tn, 1] ∈ Γ(A);
tn → 0 in L2(I). [0, 1] ∈ Γ(A).
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Exercise 4. D ⊂ H linear, dense. F : D → C - unbounded linear functional;

Ax := F (x)h0

with some given non-zero h0 ∈ H. Prove that A with D(A) = D is non-closable.
Solution: xn ∈ D; xn → 0, |F (xn)| ≥ ϵ > 0. A(xn/F (xn)) = const = h0;

xn/F (xn) → 0. So (0, h0) ∈ Γ(A).

Definition 3. A - symmetric if ∀x, y ∈ D(A) (Ax, y) = (x,Ay).

Proposition 1. Symmetric operators are closable.

We have to prove that

[x, y1], [x, y2] ∈ Γ(A) =⇒ y1 = y2

Let
(xn, Axn) → (x, y1)

(x̃n, Ax̃n) → (x, y2)

xn, x̃n ∈ D(A)

Let z ∈ D(A)
(Axn, z) = (xn, Az)

and, therefore (n→ ∞)),
(y1, z) = (x,Az) .

(Ax̃n, z) = (x̃n, Az)

and, therefore
(y2, z) = (x,Az)

Thus
(y1, z) = (y2, z)

and (D(A) is dense) y1 = y2.

Definition 4. Let A be closable. Closed operator with graph Γ(A) is called the closure
of A and is denoted by A.

Excercise 5. Closure A of symmetric operator A is symmetric.

Reminder: Closed graph theorem: closed linear operators defined on the whole
(Banach) space are continuous (= bounded).

Proposition 2. Helinger-Toeplitz Theorem.
A is symmetric and D(A) = H =⇒ A is bounded.

Proof. Obvious: A - closable, and, therefore A = A, so A is bounded.

Corollary: A is symmetric and unbounded =⇒ D(A) ̸= H.
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END OF LECTURE 1

LECTURE 2

Philosophical question: Why we are working with closed operators?
Philosophical answer: Non-closed operators have non interesting spectrum which

gives no information about the operator.

Definition 5. Complement to the spectrum:

(Spec (A))C = {z ∈ C : (A− zI)−1 exists and is bounded}

(In particular, A− zI : D(A) → H is one to one.)

Proposition 3. Spec (A) ̸= C =⇒ A is closed.

Proof. Let (A − zI)−1 : H → D(A) be bounded and one to one for some z. Let
[xn, Axn] → [x0, y0] for xn ∈ D(A). we have to show that x0 ∈ D(A) and Ax0 = y0.

(A− z)xn → y0 − zx0

(A− z)−1 is continuous, therefore,

xn → (A− z)−1(y0 − zx0)

Thus,
x0 = (A− z)−1(y0 − zx0) ∈ D(A)

On the other hand
(A− z)x0 = y0 − zx0

and, therefore,
Ax0 = y0

1.3 Adjoint Operator, Self-adjoint operators

Let y ∈ H. Consider the linear functional D(A) → C

x 7→ (Ax, y) .

There is no reason to expect it is continuous unless A is a continuous operator. But
for some y it may happen.

Example. L2(I), A = d
dt
, D(A) = C1

0(I)∫ 1

0

(
d

dt
x

)
ȳ = −

∫ 1

0

x

(
d

dt
ȳ

)
if y ∈ C1(I) and

|(Ax, y)| ≤ c||x;L2||
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If this is the case (i. e. x 7→ (Ax, y) is continuous) then Riesz theorem implies

(Ax, y) = (x, z)

for some z ∈ H.

Definition 6. If for some y the functional D(A) ∋ x 7→ (Ax, y) is continuous and
(Ax, y) = (x, z) for all x ∈ D(A), then they say that y ∈ D(A∗) and A∗y = z.

Thus,
(Ax, y) = (x,A∗y)

for x ∈ D(A) and y ∈ D(A∗).
Clearly, D(A∗) ∋ {0} and,therefore, is never empty.

Philosophical remark. Complete description of D(A∗) for a given A generally is
a non-trivial problem of great importance.

Definition 7. A is called self-adjoint if A = A∗

That means, in particular, that D(A) = D(A∗) which is, generally, hard to prove.

Self-adjoint ⇒ symmetric

Symmetric ̸⇒ Self-adjoint
If A is symmetric then D(A) ⊂ D(A∗). But, generally, D(A) ̸= D(A∗)

BUT

For bounded operators these notions coincide

Excercise 5 Find the historical anecdote about a funny dialogue between Friedrichs
(a prominent mathematician) and Heisenberg (a genial physicist, the founder of quantum
mechanics). See Peter Lax book on Functional Analysis1.

Proposition 4. 1. A∗ is closed

1Solution: “The theory of self-adjoint operators was created by von Neumann to fashion a frame-
work for quantum mechanics. The operators in Schrödinger’s theory that are associated with atoms
are partial differential operators whose coefficients are singular at certain points; these singularities
correspond to the unbounded growth of the force between two electrons that approach each other.
To define such differential operators as self-adjoint ones is not a trivial task < · · · >. I recall in the
summer of 1951 the excitement and elation of von Neumann when he learned that Kato has proved the
self-adjointness of the Schrödinger operator associated with the helium atom.
And what do the physicists think of these matters? In the 1960s Friedrichs met Heisenberg, and

used the occasion to express to him the deep gratitude of the community of mathematicians for having
created quantum mechanics, which gave birth to the beautiful theory of operators in Hilbert space.
Heisenberg allowed that this was so; Friedrichs then added that the mathematicians have, in some
measure, returned the favor. Heisenberg looked noncommittal, so Friedrichs pointed out that it was
a mathematician, von Neumann, who clarified the difference between a self-adjoint operator and one
that is merely symmetric. ”What’s the difference,” said Heisenberg.”
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2. A1 ⊂ A2 =⇒ A∗
2 ⊂ A∗

1

3. if A is closable then (Ā)∗ = A∗

Easier items:

4. (λA)∗ = λ̄A∗

5. (A+ bounded)∗ = A∗ + (bounded)∗

Proof. 1): Simple play with definitions.
Let xn ∈ D(A∗) and xn → x0; A

∗xn → y0.
That means that:
∀x ∈ D(A) one has

(Ax, xn) = (x,A∗xn)

Passing to the limit n→ ∞ gives

(Ax, x0) = (x, y0)

Thus, x0 ∈ D(A∗) and A∗x0 = y0 and A∗ is closed.

2): Again simple play with definitions.
Let z ∈ D(A∗

2).
Then ∀x ∈ D(A2)

(A2x, z) = (x,A∗
2z)

But A2x = A1x for all x ∈ D(A1) ⊂ D(A2).
So ∀x ∈ D(A1)

(A1x, z) = (x,A∗
2z)

Thus, z ∈ D(A∗
2) and A

∗
2z = A∗

1z.
3): Clearly A ⊂ Ā, so by 2) (Ā)∗ ⊂ A∗.
It remains to prove that A∗ ⊂ (Ā)∗.
Let y ∈ D(A∗). Then ∀x ∈ D(A)

(Ax, y) = (x,A∗y). (1.1) A

We have to prove that
∀z ∈ D(Ā)

(Āz, y) = (z, (Ā)∗y)

or, what is the same,
(Āz, y) = (z, A∗y)

Let xn ∈ D(A); xn → z Axn → Āz. Take x = xn in (
A
1.1) and pass to the limit.

Exercise 6: Prove 4) and 5)

7



1.4 von Neumann’s Graph Technique

Informal remark

NOT A THEOREM: Γ(A)⊥Γ(A∗); Γ(A) ⊕ Γ(A∗) = H ⊕ H. BUT that is what
one has to keep in mind as ”almost true”. Can be improved and upgraded to a correct
statement.

Reminder: Let L an arbitrary linear subspace of H. L⊥ is closed; (L⊥)⊥ = L̄;
H = L̄⊕ L⊥.

y ∈ D(A∗) iff ∀x ∈ D(A)
(Ax, y) = (x,A∗y)

or
(Ax, y)− (x,A∗y) = 0

or
⟨[Ax,−x], [y, A∗y]⟩H⊕H = 0

or
⟨U [x,Ax], [y, A∗y]⟩H⊕H = 0 ,

where
U : H ⊕H → H ⊕H

is the unitary operator (introduced by von Neumann) defined via

U([u, v]) = [v,−u]

Remark. Unitarity implies

U(L⊥) = (U(L))⊥

and
U(S̄) = U(S)

(here L is a linear subspace, S is an arbitrary subset of H ⊕H.)

Remark. Clearly U2 = −I and, therefore, U2(L) = L for any linear subspace of
H ⊕H.

As we showed: y ∈ D(A∗) iff ∀x ∈ D(A)

⟨U [x,Ax], [y, A∗y]⟩H⊕H = 0 .

Thus,

Γ(A∗) = [U(Γ(A)]⊥ = U(Γ(A)⊥) (1.2) B
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and
H ⊕H =

U(Γ(A))⊕ [U(Γ(A))]⊥ =

= U(Γ(A))⊕ Γ(A∗) =

(apply U to both sides)
= Γ(A)⊕ U(Γ(A∗))

Again:

H ⊕H = Γ(A)⊕ U(Γ(A∗)) (1.3) C

and that is true even for nonclosable A!

Proposition 5. A∗ is densely defined ⇐⇒ A is closable.
In this case

(A∗)∗ = Ā

Reminder: Adjoint A∗ is defined only for densely defined A. But A∗ need not be
densely defined !

Proof.

END OF LECTURE 2

LECTURE 3

1. =⇒
We have to show that Γ(A) is a graph.
In fact,

Γ(A) = ((Γ(A))⊥)⊥ =
[
U2Γ(A)

]⊥⊥
=

=
[
U
(
[U(Γ(A))]⊥

)]⊥
=

using (
B
1.2)

= [UΓ(A∗)]⊥ =

(since A∗ is densely defined, A∗∗ exists and we can use (
B
1.2) once again)

= Γ(A∗∗)

and that is a graph ! (of A∗∗)

2. ⇐=
Let h⊥D(A∗) and h ̸= 0. This gives a contradiction. In fact (h, 0)⊥Γ(A∗), therefore,

(0,−h)⊥UΓ(A∗)

and, therefore,
(0, h) ∈ (U(Γ(A∗))⊥ = Γ(A)

due to (
C
1.3). This means that Γ(A) is not a graph and A is not closable, which gives

the needed contradiction.
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1.5 Self-adjoint from closed: important general construction

Proposition 6. Let A is densely defined and closed. Then A∗A is self-adjoint.

Proof. Since Γ(A) is closed we have

Γ(A)⊕ U(Γ(A∗)) = H ⊕H

Thus, ∀u, v ∈ H ∃x ∈ D(A), y ∈ D(A∗):

[u, v] = [x,Ax] + [A∗y,−y]

or, what is the same, the system {
u = x+ A∗y

v = Ax− y

is solvable for any u and v in H. In particular, for v = 0. We have:{
u = x+ A∗y

Ax = y

is solvable for any u ∈ H (i. e. has solutions x ∈ D(A); y ∈ D(A∗).

Notation: Image (A) = Range (A) =: R(A)

So

R(I + A∗A) = H

Lemma 1. One has

� D(I + A∗A) is dense

� I + A∗A is symmetric

Reminder: D(I + A∗A) = D(A∗A) ∩D(I) = D(A∗A) = {x ∈ D(A) : Ax ∈ D(A∗)}

Proof:
Density: Let h⊥D(I+A∗A). Then ∃x0 ∈ D(I+A∗A) : h = (I+A∗A)x0. Therefore,

since Ax0 ∈ D(A∗),

0 = ((I + A∗A)x0, x0) = (x0, x0) + (Ax0, Ax0) ≥ 0

And x0 = 0. Thus h = 0.
Symmetry: let x ∈ D(I + A∗A). Then

((I + A∗A)x, x) = (x, x) + (Ax,Ax) ∈ R

Thus, by the polarization identity (more precise, by the Exercise after polarization
identity) I + A∗A is symmetric.

Now Proposition immediately follows from the following criterion of self-adjointness
(take B = I + A∗A and λ = 0).
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A useful criterion of self-adjointness

B – densely defined, symmetric

(∃λ ∈ C : R(B − λI) = R(B − λ̄I) = H) =⇒ B is self − adjoint

Proof. One has to prove that D(B∗) ⊂ D(B) (reminder: D(B) ⊂ D(B∗) for
symmetric B).

Let x0 ∈ D(B∗).
Then one can solve for x ∈ D(B) the equation

(B − λI)x = (B∗ − λI)x0

Then for any y ∈ D(B):

((B − λI)x, y) = ((B∗ − λI)x0, y) =

(since x0 ∈ D(B∗))
= (x0, (B − λ̄I)y)

But due to symmetry of B

((B − λI)x, y) = (x, (B − λ̄I)y)

Therefore, ∀y ∈ D(A)

(x, (B − λ̄I)y) = (x0, (B − λ̄I)y) .

Since R(B − λ̄I) = H, one has x = x0 and, therefore, x0 ∈ D(A).

Important exercises
1. Let A be densely defined. Prove that

1) KerA∗ is closed

2)H = KerA∗ ⊕R(A)

2. Let A be closed and densely defined.

Assume that ∃A−1 (generally, unbounded) and R(A) = D(A−1) = H. Then

(A∗)−1 = (A−1)∗

3. let A be closed and symmetric. Then
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A∗ is symmetric =⇒ A is self-adjoint.

4. Prove that if A is symmetric but not self-adjoint then R ⊂ Spec (A).

5. If A symmetric, D(A) = H then A is closable (already proved, give another proof
using A∗).

6. I f A symmetric, D(A) = H then Ā is symmetric.

Solutions

1.1)
yn → y, yn ∈ KerA∗; ∀x ∈ D(A)

(Ax, yn) = (x,A∗yn) = 0

and, therefore, (Ax, y) = 0. Thus, A∗y = 0.
1.2)
a)Orthogonality: R(A)⊥KerT∗. Let y ∈ KerT∗ then

(Ax, y) = (x,A∗y) = (x, 0) = 0 .

b) One has
H = R(A)⊕ (R(A))⊥ =: R(A)⊕ L

.
(!): KerA∗ ⊂ L (already done = a)); L ⊂ KerA∗:
Let u ∈ L then ∀x ∈ D(A) 0 = (Ax, u) = (x, 0) i. e. A∗u = 0.
2) Since R(A) = D(A−1) is dense, (A−1)∗ exists. From Problem 1):

H = R(A)⊕KerA∗ = H ⊕KerA∗

and KerA∗ = 0, i. e. A∗ has inverse.
Now ∀x ∈ D(A), y ∈ D((A−1)∗

(x, y) = (A−1Ax, y) = (Ax, (A−1)∗y) =

(bounded w. r. t. x!!)

= (x,A∗(A−1)∗y)

Since D(A) is dense, this implies ∀y ∈ D((A−1)∗ y = A∗(A−1)∗y
Passing to A := A−1, A−1 := A, one gets ∀z ∈ D(A∗) z = (A−1)∗A∗z.
3)A ⊂ A∗, therefore A = Ā = (A∗)∗ ⊂ A∗, and A = A∗.
4)Let some real λ do not belong to the spectrum. Then due to the above criterion

of self-adjointness A is self-adjoint. Contradiction.
5)∀x, y ∈ D(A) (Ax, y) = (x,Ay) and, therefore, y ∈ D(A∗) and D(A) ⊂ D(A∗).

Thus, D(A∗) is dense and, therefore, A is closable.
6)Let x0, yo ∈ D(Ā). Then xn → x0, Axn → Āx0; yn → y0, Ayn → Āy0 for some

sequences xn, yn from D(A). Passing to the limit in

(Axn, yn) = (xn, Ayn)

one gets
(Āx0, y0) = (x0, Āy0)
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2 First Examples

2.1 Basic example: −i d
dx

Reminder:
1) f : [a, b] → R is called absolutely continuous (a. c.) if

∀ϵ > 0∃δ :

∀a1, b1, . . . an, bn ∈ [a, b] : a ≤ a1 < b1 ≤ · · · ≤ an < bn ≤ b
n∑
k=1

(bk − ak) < δ =⇒
n∑
k=1

|f((bk)− f(ak)| < ϵ

2) f is a. c. on [a, b] iff

f(x) =

∫ x

a

h(t)dt

for some h ∈ L1[a, b].
3) If f(x) is a. c. then f ′(x) exists a. e. and f ′(x) = h(x) a. e.
4) If f(x) is a. c. and f ′(x) = 0 a. e. then f(x) = C a. e.
Consider the operator

A = −i d
dx

: L2(I) → L2(I) with domain

D(A) = {f a. c. on I : f ′ ∈ L2(I), f(0) = f(1) = 0} =: H1
0 (I)

Remark: ”-” from tradition: because F−1
x→yxFz→xf(z) = −i d

dy
f(y) in L2(R).

Integration by parts shows that A is symmetric. Clearly, D(A) is dense in L2(I).

Reminder: L2(I) ⊂ L1(I):∫ 1

0

|u| ≤
(∫ 1

0

|u|2
)1/2(∫ 1

0

1

)1/2

Introduce also the space

H1(I) = {f a. c. on I : f ′ ∈ L2(I)}

Clearly, ∀f, g ∈ H1(I)
(f ′, g) + (f, g′) = fḡ

∣∣∣1
0

and −i d
dx

is NOT symmetric on H1(I).

Proposition 7. One has

1. D(A∗) = H1(I)

2. (A∗)∗ = A
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(i. e. A is closed).

Proof.

Lemma 2.
(R(A))⊥ = C

Proof of the lemma. ⊃: For f ∈ H1
0∫ 1

0

Af 1̄ = −i
∫ 1

0

f ′ = −if |10 = 0

⊂:
A ⊂ B =⇒ B⊥ ⊂ A⊥

So,
C⊥ ⊂ R(A) =⇒ R(A)⊥ ⊂ C⊥⊥ = C

and it is enough to prove that C⊥ ⊂ R(A).
Let f ∈ L2 f⊥1. Then f(x) = d

dx

∫ x
0
f (L2 ⊂ L1) and F (x) =

∫ x
0
f ∈ H1

0 due to∫ 1

0
f = 0 and lemma is proved.

End of Lecture 3

Lecture 4

1)D(A∗) = H1
.

H1 ⊂ D(A∗) :

Let g ∈ H1, f ∈ D(A)

(Af, g) =

∫ 1

0

(−i)f ′ḡ =

∫ 1

0

f(−ig′)

Thus, g ∈ D(A∗) and A∗g = −ig′.

D(A∗) ⊂ H1 :

Let g ∈ D(A∗), f ∈ D(A)

(Af, g) = (f, A∗g) = (f,
d

dx

∫ x

0

A∗g) =

by parts

= −(f ′,

∫ x

0

A∗g) = (−if ′, i

∫ x

0

A∗g) = (Af, i

∫ x

0

A∗g)

Thus, ∀f ∈ D(A)

(Af, g − i

∫ x

0

A∗g) = 0
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and, g − i
∫
0
xA∗g⊥R(A) using the lemma, one gets

g − i

∫
0

xA∗g = C

and

g = C + i

∫ x

0

A∗g ∈ H1

(A∗g ∈ L2 ⊂ L1!).

2)(A∗)∗ = A.
1)A ⊂ (A∗)∗(= Ā).
2)(A∗)∗ ⊂ A:
One has

A ⊂ A∗ =⇒ (A∗)∗ ⊂ A∗

Thus D((A∗)∗) ⊂ H1 and (A∗)∗g = −ig′.
Let f ∈ D(A∗), g ∈ D((A∗)∗). Then

(A∗f, g) = (f, (A∗)∗g) = (f,−ig′) = (−if ′, g) + i(fḡ)
∣∣∣1
0

On the other hand
(A∗f, g) = (−if ′, g)

and, therefore
f(1)ḡ(1)− f(0)ḡ(0) = 0

(for any f in H1)
Thus, g(0) = g(1) = 0 and g ∈ H1

0 = D(A).
Remark. One can start from D(A) := C∞

0 (I) and then take a closure. This moti-
vates the following definition.

Definition 8. Let D < D(A). D is called a core of A if the closure of D in the graph
norm ||| · ||| coincides with D(A).

In other words ∀[x,Ax] ∈ Γ(A) ∃xn ∈ D :

[xn, Axn] → [x,Ax] .

Clearly, A|D = Ā.

Proposition 8.
C∞

0 (I) := {f ∈ C∞(I), f(0) = f(1) = 0}

is a core of A.

Proof. Let g ∈ D(A). (In particular, g(0) = g(1) = 0.) Then g′ ∈ L2 and
∃fn ∈ C∞

0 (I) : fn → g′ in L2.
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The problem is that
∫ x
0
fn is not in H1

0 (although C∞). Consider

Gn(x) =

∫ x

0

fn − x

∫ 1

0

fn ∈ H1
0 = D(A)

Then

G′
n = fn −

∫ 1

0

fn → g′ −
∫ 1

0

g′ = g′ − g(1)− g(0) = g′

(convergence in L2)

Gn →
∫ x

0

g′ + x(g(1)− g(0)) = g

(again in L2).
Summarizing: A = Ā ⊂ A∗; D(A) = H1

0 ; D(A∗) = H1; D(A) ̸= D(A∗).

We will find a family of operators B such that:

A ⊂ B = B∗ ⊂ A∗

These are called self-adjoint extensions of A.

Exercise
For z ∈ C \ {0} let Az be the operator −i d

dx
in L2(I) with domain

D(Az) = {f ∈ H1 : f(1) = zf(0)} .

Prove that
(Az)

∗ = A1/z̄

Solution

Clearly, ∀f ∈ D(Az), ∀g ∈ H1

(Af, g) = (f,−ig′) + 1

i
f(0)

(
zg(1)− g(0)

)
. (2.1) parts

1)D(A∗
z) ⊂ D(A1/z̄).

Let g ∈ D(A∗
z). Clearly, A ⊂ Az and, therefore, A∗

z ⊂ A∗. So, for g ∈ D(A∗
z) the

adjoint operator acts in the standard way: A∗
zg = −ig′.

Thus, for any f ∈ D(Az)

0 = (Azf, g)− (f, A∗g) =
1

i
f(0)[zg(1)− g(0)]

In particular one can take f(x) = eλx with eλ = z. Since f(0) ̸= 0,

g(1) =
1

z̄
g(0)

and g ∈ D(A1/z̄).
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2)D(A1/z̄) ⊂ D(A∗
z).

Let g ∈ D(A1/z̄). Then the second term in the r. h. s. of (
parts
2.1) is zero. Thus,

∀f ∈ D(Az)
(Azf, g) = (f,−ig′)

and, therefore, g ∈ D(A∗
z).

Corollary.

|z| = 1 =⇒ A∗
z = Az

Thus,

A ⊂ Aeiθ = A∗
eiθ ⊂ A∗ .

We will prove later that
1)All self-adjoint extensions of A have this form.
2)For different θ ∈ [0, 2π) the spectra of Aeiθ are different.

Definition 9. A is essentially self-adjoint if Ā is self-adjoint.

Remark. In this case Ā is the unique s. a. extension of A. (Exercise: Explain !)

Information

−i d
dx

1)In L2(0,+∞) with D(A) = C∞
0 (0,+∞) is symmetric but has no self-adjoint ex-

tensions.
2)In L2(−∞,∞) with D(A) = C∞

0 (R) is essentially self-adjoint. Spectrum of the
closure is the whole real axis R.

2.2 Operators with complete system of eigenfunctions

Proposition 9. Let A be symmetric, D(A) = H, ∃{fn}∞n=1 : Afn = λnfn; fn ∈ D(A)
and {fn} is an orthonormal basis of H.

Then A is essentially self-adjoint.

Proof.
Introduce the operator

Â : H ⊃ D(Â) → H

with domain

D(Â) := {
∑

αkfk :
∑

|αk|2 <∞;
∑

|λkαk|2 <∞}

acting via

Â(
∑

αkfk) =
∑

λkαkfk

We are to prove that
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1. A ⊂ Â

2. Â is closed

3. Ā = Â

4. (Â)∗ = Â

1. A ⊂ Â:
Let u =

∑
αkfk ∈ D(A). Then (Bessel)

∑
|αk|2 = ||u||2 <∞. Moreover,

(Au, fk) = (A(
∑

αjfj), fk) =

(symmetry)

= (
∑

αjfj, Afk) = (
∑

αjfj, λkfk) = λkαk

(Clearly, λk ∈ R). Thus, ||Au||2 =
∑

|λkαk|2 <∞.

2. Â is closed.
Reminder: Spec(Â) ̸= C =⇒ Â is closed.
Let Λ = ∪∞

k=1{λk}. Since all λk are real, Λc is not empty. We will show that

z ∈ Λc =⇒ z ̸∈ Spec Â

(i. e. ∃(Â− zI)−1 bounded and defined everywhere)
Introduce B : H → H:

Bu = B(
∑

αnfn) :=
∑ αn

λn − z
fn

where u is an arbitrary element of H; ||u||2 =
∑

|αn|2 <∞. Since supk |λk−z| ≥ ϵ > 0,
the L2-sum at the right is well-defined:

∑∣∣∣∣ αn
λn − z

∣∣∣∣2 <∞ .

Clearly, B is bounded (||B|| ≤ ϵ−1).
Moreover, R(B) = D(Â):
⊂ - obvious (check the estimate!)
⊃:
Let v =

∑
αnfn with

∑
|αn|2 <∞ and

∑
|λnαn|2 <∞ (i. e. v ∈ D(Â)).

Clearly,

v = B(
∑

αn(λn − z)fn)

and the r. h. s. is well-defined since∑
|αn(λn − z)|2 ≤ 2

∑
(|αnλn|2 + |z|2|αn|2) <∞ .

Now
B(Â− zI) = (Â− zI) = I

18



and z ̸∈ Spec Â.

3. Â = Ā
This is the simplest part:
Let P = [

∑
αkfk,

∑
λkαkfk] ∈ Γ(Â) Then P = limPn in H ⊕H, where Pn ∈ Γ(A)

with

Pn = [
n∑
1

αkfk,
n∑
1

λkαkfk]

4. (Â)∗ = Â
It suffices to show that (Â)∗ ⊂ Â.
Let g ∈ D(Â)∗.
Then

(Âfn, g) = (fn, (Â)
∗g) =: cn

Since cn is the n-th Fourier coefficient of (Â)∗g ∈ H one has∑
|cn|2 ≤ ∞

On the other hand
cn = (Âfn, g) = λnαn ,

where αn is the n-th Fourier coefficient of g ∈ H. Thus g =
∑
αnfn with

∑
|αn|2 <∞

and
∑

|λnαn|2 <∞. Therefore, g ∈ D(Â).

EXAMPLES

2.2.1 Dirichlet problem on I

A = − d2

(dx)2
in L2(I); D(A) = {f ∈ C2(I) : f(0) = f(1) = 0}

fn(x) = sinnπx

A is essentially self-adjoint.

2.2.2 Harmonic oscillator

A = − d2

(dx)2
+ x2 in L2(R).; D(A) = S(R) (rapidly decreasing C∞-functions).

fk(x) = Hk(x)e
−x2

2

where Hk(x) = (−1)kex
2 ( d

dx

)k
e−x

2
is the k-th Hermite polynomial.

REMARK

Everything could be checked by bare hands.
1)fk are eigenfunctions: direct simple calculation.
2)Orthogonality: follows from symmetry of the operator
3)Completeness is the only difficulty. Let f is orthogonal to all fk.
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Obviously the linear span of the first k Hermite polynomials is the space of all
polynomials of degree n. Thus,∫ +∞

−∞
f(x)xne−x

2/2dx = 0

for all n = 0, 1, . . . Consider

F (z) =

∫ +∞

−∞
ezxf(x)e−x

2/2dx

Then F (z) is entire and

F (z) =
∞∑
n=0

1

n!

(∫ +∞

−∞
xnf(x)e−x

2/2dx

)
zn = 0

In particular, F (−it) = 0 for any real t. But

F (−it) =
∫ +∞

−∞
e−itxf(x)e−x

2/2dx

is the Fourier transform of f(x)e−x
2/2. Thus, f = 0.

A is essentially self-adjoint.

End of Lecture 4

Lecture 5

Remark:
RELATIVELY HARD THEOREM (H. Weyl):

A = − d2

(dx)2
+ q(x)

with D(A) = C∞
0 (R) is essentially self-adjoint in L2(R) if (continuous) q is bounded

from below.
HARD THEOREM (D. B. Sears): If q(x) ≥ −Q(x) with positive, even, not decreas-

ing (for x ≥ 0) function Q such that∫ +∞

−∞

dx√
Q(x)

= ∞

then A is essentially self-adjoint.
Proposed as theme for a presentation at the end of the term.
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2.3 Main example of the course: multiplication operator

(M,Ω, µ) - measure space (Ω is a σ-algebra; µ is a positive measure).

a :M → R
is a measurable function such that |a(m)| < +∞ a. e. (almost everywhere).

A : L2(M,µ) ⊃ D(A) → L2(M,µ)

D(A) = {f ∈ L2(M,µ) : af ∈ L2(M,µ)}
Af = af

Proposition 10. The operator A is self-adjoint.

Proof.
1. D(A) is dense
Let f⊥D(A). Let χ{|a|<N} be the characteristic function of the set

{m ∈M : |a(m)| < N}

Clearly,
χ{|a|<N}f ∈ D(A)

(because aχ{|a|<N}f =is the product of a bounded function (aχ{|a|<N}) and a function
from L2 (f) and, therefore, belongs to L2).

Thus, for any N

0 =

∫
M

fχ{|a|<N}f =

∫
|a|<N

|f |2

and, therefore, f = 0 a. e.
2. A = A∗

Let g ∈ D(A∗). Then ∀F ∈ D(A)

(Af, g) = (f, A∗g)

or ∫
M

afḡ =

∫
fA∗g

Take f := χ{|a|<N}h with an arbitrary h ∈ L2. (As explained above f ∈ D(A) .)
This gives ∫

|a|<N
aḡh =

∫
|a|<N

A∗gh

for any h ∈ L2 and, therefore
aḡ = A∗g

on |a| < N and, therefore, aḡ = A∗g a. e. and, therefore, ag ∈ L2 and g ∈ D(A).
Thus D(A∗) ⊂ D(A) and therefore, A = A∗.

INFORMATION

Very soon we will start proving THE MAIN THEOREM of the course (and one of the
main theorems of the whole functional analysis): ”the spectral theorem for self-adjoint
operators”: any s. a. operator is unitary equivalent to the multiplication operator
corresponding to some function a(·) and (M,Ω, µ).
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2.4 Friedrichs extension of a positive symmetric operator

Let A be symmetric, D(A) = H, and let ∃γ > 0: ∀u ∈ D(A)

(Au, u) ≥ γ2||u||2 (2.2) bound

Energetic norm on D(A):
Define

|||u|||2 := (Au, u)

on D(A).
Check axioms of norm:
1)|||u||| = 0 ⇐⇒ u = 0
2)|||λu||| = |λ||||u|||
3)|||u+ v||| ≤ |||u|||+ |||v|||
Only the third is not immediately obvious. Fairly standard:

(A(u+ tv), u+ tv) = (Au, u)t2 + 2ℜ(Au, v)t+ (Av, v) ≥ 0 ,

therefore,
(ℜu, v)2 ≤ (Au, u)(Av, v) (2.3) neq

and
|||u+ v|||2 = (A(u+ v), u+ v) = |||u|||2|+ |||v|||2 + 2ℜ(Au, v) ≤

|||u|||2 + |||v|||2 + 2|||u||| |||v||| = (|||u|||+ |||v|||)2

Remark. For future use let us notice that considering (A(u + itv), u + itv), one
shows that (ℑ(Au, v))2 ≤ (Au, u)(Av, v) which (together with (

neq
2.3)) gives

|(Au, v)|2 ≤ 2(Au, u)(Av, v) . (2.4) neq1

So, one can consider completion, E, of D(A) in ||| · |||. The main observation is the
following: each element of this completion E can be identified with an element of the
space H. More precisely, there is a continuous injection

j : E → H

and E can be identified with a linear subspace of H dense in the standard || · || norm.
For any e ∈ E ≡ j(E) ⊂ H one has

||e||H ≤ 1

γ
|||e|||E . (2.5) in1

Now let us give the full details.
Due to (

bound
2.2) there is a map

{Cauchy sequence ∈ D(A) w. r. t. ||| · ||| } 7→ h ∈ H

One has to prove
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1. Equivalent Cauchy sequences are mapped to the same h ∈ H

2. If two Cauchy sequences are mapped to the same h ∈ H then they are equivalent

Proof:

1. This is trivial:
Let un, vn two Cauchy sequences from D(A) w. r. t. ||| · |||. Such that un ∼ vn (i. e.

|||un − vn||| → 0). Let un → h1, vn → h2 in H. One has

||h1 − h2|| = ||h1 − un + un − vn − (h2 − vn)|| ≤ ||h1 − un||+ ||h2 − vn||+ ||un − vn|| ≤

||h1 − un||+ ||h2 − vn||+
1

γ
|||un − vn||| → 0

as n→ ∞.
2. That is somewhat unexpected.
We have to prove that for a Cauchy sequence wn = un − vn (w. r. t. ||| · |||)

||wn|| → 0 =⇒ |||wn||| → 0

but inequality (
in1
2.5) has the opposite direction! However:∣∣∣ |||wn||| − |||wm|||

∣∣∣ ≤ |||wn − wm||| → 0

and, therefore,
|||wn||| → α

Now consider
(Awn, wm)

One has

(Awn, wm) = (Awn, wn) + (Awn, wm − wn) = |||wn|||2 + (Awn, wm − wn) =

= α + o(1) + (Awn, wm − wn)

Due to (
neq1
2.4)

|(Awn, wm − wn)| ≤
√
2|||wn||| |||wm − wn||| =

√
2(α + o(1))o(1) = o(1)

as n,m→ ∞
On the other hand for a given n

(Awn, wm) → 0

as n→ ∞ (since wm → 0 in H). This implies α = 0.

Example to keep in mind when thinking on energetic space
Let Ω be an open domain in Rn; A = −∆+ 1; H = L2(Ω), D(A) = C∞

0 (Ω).
For u ∈ D(A) one has

(Au, u) = (−∆u, u) + (u, u) =

(since u|∂Ω = 0)
= (∇u,∇u) + (u, u)
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Thus, the energetic space is the closure of C∞
0 (Ω) in the norm

|||u|||1/2 = (∇u,∇u) + (u, u)

and that is the Sobolev space H1
0 (Ω).

Thus, we have a Hilbert space E

E ⊂ H

with norm
|||e||| = lim

n→∞
|||un|||

and hermitian product
⟨⟨e, f⟩⟩E = lim

n→∞
(Aun, vn)

where un, vn are ||| · |||-Cauchy sequences from D(A) defining e, f ∈ E.

Exercise: Using polarization identity, prove independence of the hermitian product
(and, therefore, the norm) from the choice of Cauchy sequences.

End of Lecture 5

Lecture 6

Friedrichs construction of a self-adjoint operator

General setting for Fiedrichs construction:

� two Hilbert spaces E and H with hermitian products ⟨⟨·, ·⟩⟩E and (·, ·)H

� continuous injection
j : E → H

with dense range (so, one can identify E with a dense linear subspace of H).

Once one is in such set-up2, Friedrichs construction leads to a linear self-adjoint operator
in H.

We are to define the operator Â (notation shows that it is related to the operator
A that was used to construct E, but, in general, we are in the just described general
setting (having no need in the initial operator A).

Step 1. Define

D(Â) := {e ∈ E : the functional ⟨⟨e, ·⟩⟩ is bounded in H}

(i. e. ⟨⟨e, f⟩⟩ ≤ C||f ||H for any f ∈ E, and , since E is dense in H the functional
can be extended to all H as a bounded functional le(·)).

Step 2.

2Equivalent point of view: Hilbert space H, positive closed sesquilinear form a (”closed” ≡ ”D(a) =
E is dense in H (w. r. t. norm in H) and complete w. r. t. the second hermitian product
⟨⟨, ·, ·⟩⟩ = a(·, ·))”; ”positive” = ”injection is continuous”=”a(u, u) ≥ γ2(u, u)”)
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Riesz theorem implies
le(·) = (z, ·)H

for some z ∈ H. Define
Â(e) = z

Remark: For the special set-up arising from positive symmetric operator A

A ⊂ Â .

In fact, if e ∈ D(A) ⊂ E then

|⟨⟨e, u⟩⟩| = |(Ae, u)| ≤ C||u||H

for any u ∈ D(A) and, therefore, e ∈ D(Â) and Â(e) = Ae.

Properties of Â

Proposition 11. One has

1. Â : D(Â) → H is a bijection. (In particular, D(Â) is much bigger than {0} which
is not immediately obvious in the general setting.)

2. (Â)−1 is bounded

Proof.
1a) Injectivity:
Let e ∈ D(Â), so, ⟨⟨e, ·⟩⟩ is bounded in H. Thus,

|||e;E|||2 = ⟨⟨e, e⟩⟩ = (Âe, e) ≤ ||Âe;H||||e;H|| ≤

(||je;H|| ≤ C|||e;E||| for general setting, C = 1
γ
, |||e||| ≥ γ||e|| for the special set-up

related to a positive symmetric operator A)

≤ ||Âe;H|| |||e;E|||1
γ

(2.6) cont

and, therefore,
||Âe;H|| ≥ γ|||e;E|||

which implies injectivity.

1b)Surjectivity:
Choose any h ∈ H. Then

(h, ·)H
is an antilinear functional bounded not only in H but in E! Namely, for any e ∈ E

(h, e)H ≤ ||h;H|| ||e;H|| ≤ ||h;H||1
γ
|||e;E|||
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(or, in the general set-up: for any e ≡ je

(h, je)H ≤ ||h;H|| ||je;H|| ≤ ||h;H||C|||e;E|||)

Thus, Riesz theorem (applied to E gives

(h, e) = ⟨⟨h̃, e⟩⟩

for some h̃ ∈ E and any e ∈ E. Therefore h̃ ∈ D(Â) and Â(h̃) = h.
2)Boundedness of (Â)−1 is equivalent to (

cont
2.6).

And now the main statement:

Proposition 12. The operator Â with domain D(Â) is self-adjoint:

(Â)∗ = Â

Proof.
1) Â is symmetric:

Let e1, e2 ∈ D(Â).
Then

⟨⟨e1, e2⟩⟩E = (Âe1, e2)H = ⟨⟨e2, e1⟩⟩E = (Âe2, e1)H = (e1, Âe2)H

2) D((Â)∗) ⊂ D(Â):

Let f ∈ D((Â)∗. Since Â : D(Â) → H is a surjection, one has

(Â)∗f = Âe

for some e ∈ D(Â).
Now for any w ∈ D(Â)

((Â)∗f, w) = (f, Âw) = (Âe, w) =

due to symmetry of Â
= (e, Âw)

Thus,
(f, Âw) = (e, Âw)

for any w ∈ D(Â). Since R(Â) = H, we get f = e and f ∈ D(Â).
Remark. Notice that we have just repeated the trick from the proof of criterion

of self-adjointness from page 11. In fact, we could simply refer to this criterion with
B = Â and λ = 0.

Remark. Did you notice that the previous proof contained a serious gap?

Of course, if Â came from A then, as we have showed, D(Â) contains D(A) and,
therefore, is dense.
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But in general setting (when there is no operator A) part 2) of Proposition 12 makes
no sense: we did not prove that D(Â) is dense and, therefore, had no right to introduce
the operator Â∗!

So, let us accurately analyse definition of D(Â).
We have the bounded injection

j : E → H

with dense range. Introduce the adjoint operator

j∗ : H → E

via
⟨⟨j∗h, e⟩⟩E = (h, je)H

(since, ||j∗h|| = sup|||e|||=1⟨⟨j∗h, e⟩⟩ = sup(h, je) ≤ ||j||||h|| it is bounded). Clearly, the
range R(j∗) is dense. (Assume that e1⊥R(j∗), then for any h ∈ H

0 = (j∗h, e1) = (h, je1)

and he1 = 0. Thus, e1 = 0.)
This implies that the range R(jj∗) of the composition jj∗ : H → H is also dense:

(Let h ∈ H then for any ϵ > 0 ∃e0 ∈ E and δ > 0 such that ||je0 − h|| < ϵ and for
all e ∈ E such that

|||e− e0||| < δ

one has
||j(e)− h|| < 2ϵ

(density of R(j) + continuity of j!)
But Rj∗ is dense, so ∃h1 ∈ H such that ||j∗h1 − e0|| < δ. Thus,

||jj∗h1 − h|| < 2ϵ

and R(jj∗) is dense.)

To prove that D(Â) is dense it remains to observe that

Lemma 3. One has
D(Â) = R(jj∗)

This is in fact a tautology (directly follows from the definitions).

D(Â) = {h = je : ∃h1 ∈ H ∀e1 ∈ E ⟨⟨e, e1⟩⟩E = (h1, je1)H}

Thus, e = j∗h1 and h = jj∗h1.

Self-adjoint operator of the Dirichlet problem
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{
−∆u+ u = 0 in Ω

u
∣∣∣
∂Ω

= 0

Let Ω be an open domain in Rn; A = −∆+ 1; H = L2(Ω), D(A) = C∞
0 (Ω).

E = H1
0 (Ω)

⟨⟨u, v⟩⟩ = (∇u,∇v) + (u, v)

D(Â) = {u ∈ H1
0 (Ω) : ∃f ∈ L2(Ω) : ∀w ∈ H1

0 (Ω) ⟨⟨u,w⟩⟩ = (f, w)}

In other words:
D(Â) = {u ∈ H1

0 (Ω) : ∆u ∈ L2(Ω)}

(Elliptic theory: for smooth ∂Ω: u ∈ H1
0 (Ω) and ∆u ∈ L2 (in the sense of D′(Ω))

then u ∈ H2(Ω). In this case D(Â) = H1
0 (Ω) ∩H2(Ω))

Self-adjoint operator of the Neumann problem

{
−∆u+ u = 0 in Ω
∂u
∂n

∣∣∣
∂Ω

= 0

Apply general Friedrichs construction to (H1(Ω), L2(Ω)) (no starting operator A).
(Or, consider the closed positive form a(u, v) = (∇u,∇v) + (u, v) with domain H1(Ω).)

D(Â) = {u ∈ H1(Ω) : ∃f ∈ L2(Ω) : ∀w ∈ H1(Ω) ⟨⟨u,w⟩⟩ = (f, w)}

It can be shown (using elliptic theory) that for smooth ∂Ω:

D(Â) = {u ∈ H2(Ω) : un|∂Ω = 0}

3 The spectral theorem

3.1 Resolvent

3.1.1 General properties of the resolvent

Let A be a closed (otherwise Spec (A) = C and all the statements below are void
(although correct)) operator, A : H ⊃ D(A) → H.

Proposition 13. The spectrum of A, Spec (A) is closed. If z0 ∈ Spec (A)c and α0 =
||(A− z0I)

−1|| then
Spec (A) ∩ {w : |w − z0| <

1

α
} = ∅ .
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Proof. We start with formal calculation:

1

A− z
=

1

A− z0 − (z − z0)
=

1

(A− z0)
[
I − z−z0

A−z0

] =

=
∞∑
n=0

(
1

A− z0

)n+1

(z − z0)
n

Now let
B = (A− z0I)

−1

C :=
∞∑
n=0

Bn+1(z − z0)
n

(clearly, the latter series converges for |z − z0| < 1
||B||)

Step 1.
Play with power series: (w := z − z0)

wBC = wB2 + w2B3 + · · · = C −B = wCB

Remark. Compare this with resolvent identity from Proposition 14 below.

(In particular, one gets KerC = KerB (= {0}!); R(C) = R(B) (= D(A)!):
Since wBC = C −B, KerC ⊂ KerB and R(C) ⊂ R(B).
Since wCB = C −B, KerC ⊃ KerB and R(C) ⊃ R(B).)
Remark. Clearly, the above relations with Ker-s and R-s of the resolvent (see the

definition below) are true for any z0, z belonging to the same connected component of
the complement of the spectrum.

Step 2.
We are to show that

C(A− zI) = (A− zI)C = I

Let x ∈ D(A) and
(A− z0I)x = y

i. e.
x = By.

Let us use the relation
wCB = C −B .

with w = z − z0. One has

wCx = wCBy = Cy −By = Cy − x

C(y − wx) = x

C((A− z0)x− (z − z0)x) = x

and
C(A− zI)x = x .

Prove (A− zI)Cx = x as an exercise.
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Resolvent (analytic operator-function on (SpecA)c):

R(z;A) := (A− zI)−1

Resolvent Identity

Proposition 14.

R(z;A)−R(w;A) = (z − w)R(z;A)R(z;w) (3.1) RI

and
R(z;A)R(z;w) = R(w;A)R(z;A) .

Proof.
z − w = (A− w)− (A− z)

(A− z)−1(z − w)(A− w)−1 = (A− z)−1 − (A− w)−1

(A− w)−1(z − w)(A− z)−1 = (A− z)−1 − (A− w)−1

End of lecture 6

Lecture 7

An example of application of the resolvent identity

Riesz projector. Let A be a closed operator and let γ ⊂ C be a positively oriented
closed contour such that γ ∩ Spectrum (A) = ∅. Introduce the bounded operator P :
H → H via

P := − 1

2πi

∮
R(z;A)dz

Then P is a projection, i. e. P 2 = P .
Proof. Let δ be a ”slightly shrunken” γ still lying in the complement to the spectrum

and not intersecting γ.

P 2 =

(
1

2πi

)2 ∮
δ

R(ζ;A) dζ

∮
γ

R(z;A) dz =

(
1

2πi

)2 ∮ ∮
γ×δ

R(ζ;A)R(z;A)dζdz =

(now use resolvent identity)

=

(
1

2πi

)2 ∮ ∮
γ×δ

1

z − ζ
(R(z;A)−R(ζ;A))dζdz =

=

(
1

2πi

)2 [∮
γ

R(z;A)dz

∮
δ

dζ

z − ζ
−
∮
δ

R(ζ;A)dζ

∮
γ

dz

z − ζ

]
=

=

(
1

2πi

)2 [
0−

∮
δ

R(ζ;A)dζ (2πi)

]
= P .
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Proposition 15.
d

dz
R(z;A) =

[
R(z;A)2

]2
Proof.

R(z;A) = C =
∞∑
n=0

(z − z0)
nBn+1

d

dz
R(z;A) =

∞∑
n=1

n(z − z0)
n−1Bn+1 =(

∞∑
n=0

(z − z0)
nBn+1

)(
∞∑
n=0

(z − z0)
nBn+1

)
.

The last equality follows from the same equality for ordinary power series:

d

dζ

(
1

b− ζ

)
=

(
1

b− ζ

)2

.

(Plug β := b−1; since all the powers of the operator B commute, the identity with β
remains true with β replaced by B.)

3.1.2 Resolvent of a self-adjoint operator

Proposition 16. Let A : H ⊃ D(A) → H be a self-adjoint operator. Then

1. SpecA ⊂ R

2. R∗(z;A) = R(z̄;A) for z ∈ C \ R.

3.

||R(z;A)|| ≤ 1

|ℑz|

Proof.

Key calculation for self-adjoint operators:

Let z = x+ iy; |y| > 0; A = A∗, u ∈ D(A). Then (please, check!)

||(A− zI)u||2 = ||(A− x)u||2 + y2||u||2 ≥ |y|2||u||2 (3.2) est1

Thus, A− zI is an injection and (A− zI)−1 : R(A− zI) → H is bounded.

Lemma 4. R(A− zI) is dense, R(A− zI) = H.

In fact, let g⊥R(A− zI) then for any x ∈ D(A)

0 = ((A− zI)x, g)

and g ∈ Ker (A− zI)∗ = Ker (A− z̄I) = {0} due to (
est1
3.2).

A = A∗ is closed, therefore Γ(A − zI)−1 is closed and, therefore, R(A − zI) being
dense should coincide with H (explain!). Thus (A− zI)−1 : H → H is bounded. So 1)
and 3) is proved. 2) follows from exercise 2 on page 11.
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3.2 Proof of the spectral theorem

3.2.1 Functions analytic on C+ with positive imaginary part

Let A : H ⊃ D(A) → H, A = A∗, f ∈ H and let

Φf (z) := (R(z;A)f, f) .

Let H+ = {z ∈ C : ℑz > 0} (similarly for H−).

Lemma 5. The function Φf satisfies

1. Φf is analytic in C \ R

2. Φf : H± → H± (the most important!)

3. |Φf (z)| ≤ ||f ||2
|ℑz|

4. Φf (z) = Φf (z̄)

Proof. 1) See Proposition 15.
2) Since R(A− zI) = H, f = (A− zI)g for some g ∈ H

(R(z)f, f) = (g, (A− zI)g) = (g, Ag)− z̄(g, g)

The first term at the right is real, the sign of the imaginary part of the second term is
the same as the sign of ℑz.

3)Follows from (
est1
3.2).

4)
Φf (z) = (f,R(z)f) = (R∗(z)f, f) = (R(z̄)f, f) = Φf (z̄) .

Spectral Theorem

Theorem 1. Let A be a self-adjoint operator in H. Then there exists a measure space
(M,Ω, µ), a measurable real-valued function f : M → R and a unitary operator U :
H → L2(M,µ) such that A = U−1mfU , where mf is the multiplication operator

L2(M,µ) ∋ u 7→ mf (u) ≡ fu ∈ L2(M,µ) .

Remark. How the measure µ appears? Informal answer: through

Herglotz theorem!

The analytic background: holomorphic function Φf (z) maps upper half-plane into
itself: all such functions are well-understood analytically: Roughly speaking:

ϕx : z 7→
1

x− z

for x ∈ R is such a function; moreover, it is clear that any combination∫
R
ϕxdσ(x)
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with finite Borel measure dσ on R is such a function. Herglotz theorem says that any
such function (if it vanishes at +i∞) can be represented as the latter integral. The
measure space Ω will be a countable disjoint union of real lines (each of them provided
with its own Borel measure dσ given by Herglotz theorem). The function f(x) will
coincide with f(x) = x being restricted to each real line.

Remark. The most elegant proof (and the most natural) of the Herglotz theorem
uses Krein-Milman theorem (roughly speaking, functions ϕx are extremal points of the
set of all analytic functions in H with positive imaginary part). The most standard
short modern proof is based on Banach–Alaoglu theorem (closed unit ball of the dual
space of a normed vector space is compact in the weak∗ topology). We will give an
old-fashioned proof based on Helly theorem for Stieltjes integrals (which in fact is a
specialization of Banach-Alaoglu).

Proposition 17. (Herglotz Theorem.) Let f : H+ → H+ is holomorphic and let

|f(z)| ≤ 1

ℑz
.

Then there exists a monotone (non-decreasing) function3 σ : R → R such that

0 ≤ σ(x) ≤ 1

lim
x→−∞

σ(x) = 0

lim
x→+∞

σ(x) ≤ 1

and

f(z) =

∫
R

dσ(x)

x− z
.

Proof of Herglotz Theorem

(was not shown in class)

Lemma 6. (Schwarz formula) Let f be holomorphic in {|z| < R1} and 0 < R < R1.
Then for any z, |z| < R one has the representation

f(z) = iℑf(0) + 1

2π

∫ π

−π

Reiϕ + z

Reiϕ − z
ℜf(Reiϕ) dϕ . (3.3) Sch

Proof. That is a well-known consequence of the classical Poisson formula (see, e.
g., Ahlfors course in CA), but can be easily proved directly. Analytical reason:∮

|z|=R
z̄kzm dz = 0

for m+ 1− k ̸= 0.

3continuous from the left, i. e. defining Borel measure µ = dσ via µ([a, b)) = σ(b)− σ(a)
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Rewrite the integral in the r. h. s. of (
Sch
3.3) as

I =
1

2πi

∮
|z|=R

[
2

ζ − z
− 1

ζ

]
1

2

(
f(ζ) + f(ζ)

)
dζ .

Using Cauchy formula and expanding f(z) =
∑
akz

k; f(z) =
∑
ākz̄

k, 2
ζ−z =

2
ζ

∑∞
k=0

(
z
ζ

)k
one gets

I =
1

2
[2f(z)− f(0)] +

1

2πi

∮
|z|=R

{
2

ζ

∞∑
k=0

(
z

ζ

)k
− 1

ζ

}[
1

2

∑
k=0

ākζ̄
k

]
dζ =

f(z)− 1

2
f(0) + ā0 −

ā0
2

=

f(z)− f(0)

2
+
f(0)

2
= f(z)− iℑf(0) .

HR Theorem 2. (Herglotz, F. Riesz). Define the class (a. k. a. the class of pseudopositive
functions)

C(arathéodory) = {f : f is analytic in D = {|z| < 1}, f(D) ⊂ {w : ℜw > 0}} .

Then

f ∈ C ⇐⇒ f(z) = iℑf(0) + 1

2π

∫ π

−π

eiϕ + z

eiϕ − z
dσ(ϕ) ,

where σ is a non-decreasing function of bounded variation on [−π, π] or, what is the
same, dσ is a positive finite Borel measure µ on [−π, π]: σ(x) := µ([−π, x], σ is contin-
uous from the right, Varba(σ) = µ([a, b]); the Stieltjes integral appearing in the r. h. s.
is just the integral w. r. t. µ).

That is an almost immediate consequence of the Schwarz formula and Banach-
Aláoglu theorem (unit ball in the dual space (space of finite regular (µ(F ) = inf µ
(”bigger open”)=supµ (”smaller closed”)) Borel measures) on [−π, π] to a separable
Banach space (C([−π, π]) is compact in weak-*-topology (see Rudin, R&C Analysis,
11.12 ans 11.19), in Stieltjes language the latter is usually replaced by (old-fashioned)
Helly’s theorems (”the first” and ”the second”).

Namely, let f ∈ C. Then for |z| < R < 1

f(z) = iℑf(0) + 1

2π

∫ π

−π

Reiϕ + z

Reiϕ − z
ℜf(Reiϕ) dϕ

and

f(Rz) = iℑf(0) + 1

2π

∫ π

−π

eiϕ + z

eiϕ − z
d

(∫ ϕ

−π
ℜf(Reiθ)dθ

)
Consider the family of monotonously growing (non decreasing) functions

σR(ϕ) :=

∫ ϕ

−π
ℜf(Reiθ)dθ
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|z| < R < 1 .

Obviously, it is uniformly bounded

|σR(ϕ)| ≤
∫ π

−π
ℜf(Reiθ)dθ = 2πRℜf(0) ≤ 2πℜf(0)

(ℜf is harmonic, mean value theorem for harmonic functions is used). Thus (Helly),
∃Rk → 1 and (non decreasing) σ: σRk

→ σ at the points of continuity of σ (in particular,
a. e.) and ∫ π

−π

eiϕ + z

eiϕ − z
dσR(ϕ) −→

∫ π

−π

eiϕ + z

eiϕ − z
dσ(ϕ)

The most elementary proof of Theorem
HR
2:

It is really striking but one could avoid any reference to Helly’s and B-A’s theorems.
The following ingenious trick can be found in Simon’s recent book on Loewner Theorem.

Lemma 7. Let F ⊂ C(T ), and let F is dense in C(T ). Let µr be a a family of probability
measures on T and let

∀ϕ ∈ F ∃ lim
r→1−

∫
T

ϕdµr .

Then there exists a probability measure µ on T such that

∀g ∈ C(T ) lim
r→1−

∫
T

gdµr =

∫
T

g dµ

Proof. Clearly, ∀g ∈ C(T ) ∃ limr→1−
∫
T
g dµr:

∣∣∣∣∫
T

g dµr1 −
∫
T

g dµr1

∣∣∣∣ = ∣∣∣∣∫ (g − ϕk)dµr1 −
∫

(g − ϕk) dµr2 +

∫
T

ϕkdµr1 −
∫
ϕkdµr2

∣∣∣∣ ≤ 3
ϵ

3
= ϵ

l(g) := lim
r→1−

gdµr

|l(g)| ≤ ||g||∞
l(g) ≥ 0 if g ≥ 0

Now R-M Theorem implies l(g) =
∫
T
g dµ.

Lemma 8. Let K(w, z) = w+z
w−z . Then the linear span F of functions

θ 7→ K(eiθ, z)

and
θ 7→ K(eiθ, z)

with z ∈ {|z| < 1} is dense in C(T ).
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Proof. One has

K(eiθ, z) = 1 + 2
∞∑
n=1

zne−inθ

Derivatives dn

(dz)n
K(eiθ, z)

∣∣∣
z=0

(represented as limits) are in in the closure of the span,

so all einθ (n ≥ 0) and there conjugates are in the closure of the span, so the statement
follows from Weierstrass theorem for trigonometric polynomials.

Now applying Schwarz formula (
Sch
3.3) to ψ(z) = f(rz) one gets

f(rz) =

∫
K(etθ, z)dµr(θ)

with dµr =
1
2π
ℜf(reiθ)dθ and f(rz) → f(z) as r → 1− and Theorem

HR
2 follows immedi-

ately from the two lemmas above.

Define the class N(evanlinna):

N = {f ∈ A({ℑz > 0}) : f({ℑz > 0}) ⊂ {ℑz > 0}}

Corollary 1.
f ∈ N

if and only if

f(z) = µz + ν +

∫ +∞

−∞

1 + uz

u− z
dτ(u)

where µ, ν ∈ R, µ > 0 and τ is a non decreasing function of bounded variation.

Proof. From Theorem
HR
2

Φ(z) = (if(z)) = ℜΦ(0) + i

2π

∫ π

−π

eiθ + z

eiθ − z
dσ(θ)

for Φ : D → {ℑz > 0}.
ζ ∈ D 7→ z ∈ {ℑz > 0}

ζ =
1 + iz

1− iz

z =
1

i

ζ − 1

ζ + 1

Let Ψ ∈ N, then

Ψ(
1

i

ζ − 1

ζ + 1
) = Φ(ζ) = ℜΦ(0) + i

2π

∫ π

−π

eiθ + ζ

eiθ − ζ
dσ(θ)

and

Ψ(z) = ℜΨ(i) +
i

2π

∫ π

−π

eiθ + 1+iz
1−iz

eiθ − 1+iz
1−iz

dσ(θ)
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u = tan θ/2

eiθ =
1− u2

1 + u2
+ i

2u

1 + u2
=

1 + iu

1− iu

dσ(θ) = dσ̃(θ) + µδ(· − π) = dσ̃(2 arctanu) + µδ = dτ(u) + µδ ,

where µ > 0 and σ̃ is left continuous at +π.
One has

1+iu
1−iu +

1+iz
1−iz

1+iu
1−iu −

1+iz
1−iz

=
1

i

uz + 1

u− z

and

Ψ(z) = ℜΨ(i) +

∫ +∞

−∞

1 + uz

u− z

dτ(u)

2π
+

1 + uz

u− z

∣∣∣
u=+∞

µ

Introduce the class R(esolvent):

R = {f ∈ N : sup
y≥1

|yf(iy)| <∞}

Finally, we get the Herglotz Theorem as a corollary:

Corollary 2.
f ∈ R

if and only if

f(z) =

∫ +∞

−∞

dσ(u)

u− z

with non decreasing σ of bounded variation.

Proof. From Corollary 1

yf(iy) = iµy2 + νy + y

∫ ∞

−∞

1 + iuy

u− iy
dτ(u)

Therefore,

ℑ(yf(iy)) = µy2 + y2
∫ ∞

−∞

1 + u2

u2 + y2
dτ(y) (3.4) Im

ℜ(yf(iy)) = νy + y

∫ ∞

−∞

u(1− y2)

u2 + y2
dτ(u) (3.5) Re

and, since f ∈ R,
|yf(iy)| ≤ C (3.6) nerav

as y → +∞. From (
Im
3.4) and (

nerav
3.6) one gets

µ = 0 (3.7) mu

and

y2
∫ B

A

1 + u2

u2 + y2
dτ(y) ≤ C
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for any A,B and, therefore, ∫
R
(1 + u2)dτ(u) ≤ C (3.8) key

From (
Re
3.5) and (

nerav
3.6) one gets

ν + lim
y→∞

∫
R

u(1− y2)

u2 + y2
dτ(u) = 0

and, therefore,

ν =

∫
R
udτ(u) (3.9) nu

Finally, Corollary 1, (
mu
3.7) and (

nu
3.9) give

f(z) =

∫
R

(1 + u2)dτ(u)

u− z

Introduce

σ(u) =

∫ u

−∞
(1 + v2)dτ(v)

(see (
key
3.8)!). Now

f(z) =

∫
R

dσ(u)

u− z

as stated in the Corollary.
Exercise. Let f(z) = const = β + iγ with γ > 0. Clearly f ∈ N. How Corollary 1

works here?
Answer.

f(z) = β +
γ

π

∫
R

1 + uz

u− z

du

1 + u2

(compute the integral via Cauchy theorem).
To restore the measure from f(z) one uses Stiltjes-Perron formula (Akhiezer, Clas-

sical moment problem, p. 155 of Russian edition), cf. attachment to Lang’s “SL2(R)”.
More details will be added.

Proof of the Spectral Theorem

Let us derive the spectral theorem from the Herglotz theorem.

Herglotz =⇒ S. T.

End of Lecture 7

Lecture 8
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Choose f ∈ H.
Then Φf (z) = (R(z;A)f, f) is analytic in H+ and has positive imaginary part there,

therefore,

Φf (z) =

∫
dσ(x)

x− z

due to the Herglotz Theorem.
Define the closed subspace, Hf , of H via

Hf = LinSpan
(
{f} ∪ {R(z;A)f : z ∈ C \ R}

)
We will construct isometric isomorphism

U : Hf → L2(R, dσ)

Define

U(µf +
n∑
i=1

λiR(zi;A)f) = µ+
n∑
i=1

λi
· − zi

(3.10) isom

Clearly, expression at the right gives an element of L2(R, dσ).

Lemma 9.

||µf +
n∑
i=1

λiR(zi;A)f ;H|| = ||µ+
n∑
i=1

λi
· − zi

;L2(R, dσ)|| .

Since

||
n∑
i=1

vi||2 =
v∑
i=1

||vi||2 + 2
∑
i<j

ℜ(vi, vj) , (3.11) Sqn

it suffices to show that

1.

(R(z, A)f, f)H = (
1

· − z
, 1)L2(R,dσ) =

∫
R

dσ(x)

x− z

(and that is already done (= Φf (z)),

2.

(R(z;A)f,R(w;A)f)H = (
1

· − z
,

1

· − w
)L2(R,dσ) =

∫
R

dσ(x)

(x− z)(x− w̄)

(relatively easy consequence of the resolvent identity),

3.

(f, f)H = (1, 1)L2(R,dσ) =

∫
R

dσ

and that is the most tricky.
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Let us prove 2):

(R(z;A)f,R(w;A)f)H = (R∗(w;A)R(z;A)f, f) = (R(w̄;A)R(z;A)f, f) =

(by the resolvent identity)

1

w̄ − z
([R(w̄;A)−R(z;A)]f, f) =

(using Herglotz)

=
1

w̄ − z

∫
R

(
1

x− w̄
− 1

x− z

)
dσ(x) =∫

R

1

x− z

1

x− w
dσ(x) .

Now 3):
Naive idea:

([I − iϵA]−1f, [I − iϵA]−1f) ∼ (f, f)

for small ϵ. Since A is unbounded, seems wrong. In fact, works!
One has

[I − iϵA]−1 = − 1

iϵ
R(

1

iϵ
;A)

and

([I − iϵA]−1f, [I − iϵA]−1f) =
1

ϵ2

(
R(

1

iϵ
;A)f,R(

1

iϵ
;A)f

)
=

due to items 1) and 2) and (
Sqn
3.11)

=
1

ϵ2

∫
R

∣∣∣∣ 1

x− 1
iϵ

∣∣∣∣2 dσ(x) =
=

∫
R

∣∣∣∣ 1

1− iϵx

∣∣∣∣2 dσ(x)
Now it is obvious that the right hand side has the limit (=

∫
R dσ) as ϵ → 0 (due to

Lebesgue: ∣∣∣∣ 1

1− iϵx

∣∣∣∣2 ≤ 1

and 1 is a summable majorant (dσ is a finite measure!))
What about the left hand side? It turns out that [I − iϵA]−1f ] converges:

||[I − iϵ1A]
−1f − [I − iϵ2A]

−1f ||2 =
due to 1), 2) and (

Sqn
3.11)

=

∫
R

∣∣∣∣∣ 1iϵ1 1

x− 1
iϵ1

− 1

iϵ2

1

x− 1
iϵ2

∣∣∣∣∣
2

dσ(x) → 0
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as ϵ1, ϵ2 → 0 (due to Lebesgue Theorem). Thus,

gϵ := [I − iϵA]−1f → g

with some g ∈ H as ϵ→ 0.
One has

[I − iϵA]gϵ = f

and
A(iϵgϵ) = gϵ − f → g − f .

But iϵgϵ → 0 as ϵ→ 0. Thus, [0, g − f ] ∈ Γ(Ā). Since A is closed, g = f , and

(f, f)H =

∫
R

dσ .

as was stated.

Lemma 10. The range of U is dense:

R(U) = L2(R; dσ) .

Proof. Clearly, R(U) contains constants and fractions c
·−z with z ∈ C \ R.

Moreover, since

1

(· − z)n
= lim

ϵ→0

1

(· − z)(· − z + ϵ) . . . (· − z + (n− 1)ϵ)
=

= lim
ϵ→0

n−1∑
k=0

Ak
· − z + kϵ

(lim is taken in L2(R; dσ)), the closure R(U) contains contains all rational functions

pm(x)

qn(x)
= c+

∑ Ak,l
(x− zk)l

with m ≤ n and poles lying outside R.
Clearly, the set of such rational functions forms an *-algebra (check!) of continuous

functions on one-point compactification, R̄, of R (one can think about this object as S1)
which separates the points of R̄ and vanish at no point of R̄. Due to Stone-Weierstrass
theorem this set is dense in C(R̄) (in uniform norm) and, therefore, any function from
C(R̄) can be approximated by such rational functions in L2(R, dσ)-norm. In particular,

R(U) ⊃ Ccomp(R) .

Let f⊥R(U). Then ∫
R
mf̄dσ = 0
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for any m ∈ Ccomp(R). Since f ∈ L2(R; dσ) and dσ is a finite measure, f ∈ L1(R; dσ)
and f̄dσ is a (comlex-valued) measure dµ:∫

R
gdµ =

∫
R
gf̄dσ

Now

∀g ∈ Ccomp (R)
∫
gdµ = 0 =⇒ µ = 0

and, therefore, f = 0 a. e. with respect to dσ. Thus f = 0 as an element in L2(R, dσ)
and the lemma is proved.

These two lemmas immediately imply that

Proposition 18. The map (
isom
3.10) extends to isometric isomorphism

U : Hf → L2(R, dσ)

Lemma 11. For any z ∈ C \ R

R(z;A)Hf ⊂ Hf .

Proof. For z ̸= zk we have from the resolvent identity:

R(z;A)R(zk;A)f =
1

z − zk
(R(z;A)f −R(zk;A)f) ∈ Hf .

For z = zk one uses Proposition 15 (derivative of the resolvent)

R(z;A)R(z;A)f =
d

dz
R(z;A)f = lim

w→z

1

z − w
(R(z;A)f −R(w;A)f) ∈ Hf .

Crucial fact

Resolvent operator, g 7→ R(z;A)g, in Hf is unitary equivalent to the operator of the
multiplication,

ϕ(x) 7→ 1

x− z
ϕ(x) ,

by the function 1
·−z in L2(R, dσ).

Lemma 12. Let z ∈ C \ R. Then

UR(z;A) =
1

· − z
U (3.12) rerepr

Proof. It suffices to check (
rerepr
3.12) on a dense set.

UR(z;A)
(
µf+

∑
λkR(zk;A)f

)
= U

(
µR(z;A)f+

∑ λk
z − zk

(R(z;A)f−R(zk;A)f)
)
=

=
µ

· − z
+
∑ λk

z − zk
(

1

· − z
− 1

· − zk
) =

=
1

· − z

(
µ+

∑ λk
· − zk

)
=

=
1

· − z
U
(
µf +

∑
λkR(zk;A)f

)
.
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End of Lecture 8

Lecture 9

End of the proof of the Spectral Theorem

Step 1:
H = ⊕∞

k=1Hfk

(Of course, the sum can be finite.)
Let g1, g2, . . . be a ONB in H.

f1 := g1

H = Hf1 ⊕H⊥
f1

Clearly, the orthogonal complement, H⊥
f1

is invariant w. r. t. all operators R(z;A)
with z ∈ C \ R:

In fact, let g ∈ H⊥
f1

then for any h ∈ Hf

(h,R(z;A)g) = (R(z̄;A)h, g) = 0

due to Lemma 7, and, therefore, R(z;A)g ∈ H⊥
f1
.

Take the minimal integer k such that

ProjH⊥
f1
gk ̸= 0

and put
f2 := ProjH⊥

f1
gk ∈ H⊥

f1

Then Hf2⊥Hf1 .

Clearly, (Hf1 ⊕Hf2)
⊥ is invariant w. r. t. to all R(z;A) as the intersection of two

invariant subspaces:
(Hf1 ⊕Hf2)

⊥ = H⊥
f1
∩H⊥

f2

Let l be the smallest integer such that

Proj(Hf1
⊕Hf2

)⊥gl ̸= 0

Take
f3 := Proj(Hf1

⊕Hf2
)⊥gl

and so on.
Step 2: From Step 1, H is isometric to

⊕∞
k=1L2(R(k); dσ(k))

and R(z;A) in H is unitary equivalent to multiplication by 1
·−z in each L2(R(k); dσ(k)).

What happens to D(A) under this isometry?

43



Take any z ∈ C \ R. Then

D(A) = {h ∈ H : ∃h1 ∈ H such that h = R(z;A)h1}
(A− zI : D(A) → H and R(A− zI) = H - see the statement after Lemma 3, page 30)
Thus D(A) turns into

{ψ ∈ L2 : ∃ϕ ∈ L2 such that ψ =
1

· − z
ϕ}

or, what is the same
{ψ ∈ L2 : (· − z)ψ ∈ L2}

or, what is the same
{ψ ∈ L2;xψ ∈ L2}

!!!

On the other hand
A = R(z;A)−1 + zI : D(A) → H

and that is multiplication g(x) 7→ xg(x) in ⊕∞
k=1L2(R(k); dσ(k)). Spectral Theorem

is proved.

4 Kato-Rellich and around

Definition 10. Let α ∈ R. Operator B is called α-bounded with respect to operator A
if

� D(B) ⊃ D(A).

� ∀x ∈ D(A) one has
||Bx|| ≤ α||Ax||+ C||x|| .

Remark. Clearly,

||Bx||2 ≤ α2||Ax||2 + C2||x||2 =⇒ ||Bx|| ≤ α||Ax||+ C||x|| .

and, since

2αC||Ax|| ||x|| = 2δα||Ax||C
δ
||x|| ≤ δ2α2||Ax|2 +

(
C

δ

)2

||x||2 ,

one has

||Bx|| ≤ α||Ax||+ C||x|| =⇒ ||Bx||2 ≤ (α + ϵ)2||Ax||2 + C1||x||2

Proposition 19. Let B is α-bounded w. r. t. A and α < 1. Then

A is closed =⇒ A+B is closed.

Reminder: one has to prove that
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xn → x0; (A+B)xn → y0 =⇒ x0 ∈ D(A+B) & (A+B)x0 = y0

Proof. Straightforward:

||Axn−Axm|| ≤ ||(A+B)(xn−xm)−B(xn−xm)|| ≤ ||(A+B)(xn−xm)||+||B(xn−xm)|| ≤

||(A+B)(xn − xm)||+ α||A(xn − xm)||+ C||xn − xm|| .

Since α < 1 this implies

||Axn − Axm|| ≤ C1(||(A+B)(xn − xm)||+ ||xn − xm||)

Since A is closed, x0 ∈ D(A) and Axn → z = Ax0. On the other hand, since

||B(xn − x0)|| ≤ α||Axn − Ax0||+ C||xn − x0|| ,

Bxn → Bx0 .

Thus
(A+B)xn → (A+B)x0 = y0 .

Proposition 20. Let A be self-adjoint and let B be symmetric. Assume that B is
α-bounded w. r. t. A and α < 1. Then A+B is self-adjoint.

We will be using criterion from page 11:

B – densely defined, symmetric

(∃λ ∈ C : R(B − λI) = R(B − λ̄I) = H) =⇒ B is self − adjoint

We will prove that
R(A+B ± icI) = H

for any c > C, where C is the constant from the estimate

||Bx||2 ≤ α2||Ax||2 + C2||x||2 . (4.1) est2

Step 1. R(A+B ± icI) is a closed subspace of H.
This is true in more general case (since A+B is closed due to the previous proposition

and symmetric):

T - closed, symmetric =⇒ R(T − zI) is closed for any z ∈ C \ R.

As in (
est1
3.2) for u ∈ D(T ) one has the inequality

||(T − z)u||2 ≥ |ℑz|2||u||2.

Let xn ∈ R(T − zI), xn → x0. Then xn = (T − zI)yn for yn ∈ D(T ) and

||xn − xm||2 = ||(T − z)(yn − ym)||2 ≥ |ℑz|2||yn − ym||2
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Thus, yn → y0 and, since T − zI is a closed operator, y0 ∈ D(T ) and (T − zI)y0 = x0.
Thus x0 ∈ R(T − zI).

Step 2. R(A+B + icI) = H.
Let h⊥R(A+B + icI). We have to show that h = 0. One has

((A+B + icI)x, h) = 0

for all x ∈ D(A). (Reminder: D(B) ⊃ D(A).)
The operator A is self-adjoint, therefore, spectrum (A) ⊂ R and, therefore,

R(A+ icI) = H .

Therefore,
h = (A+ icI)y

with some y ∈ D(A) and

((A+B + icI)x, (A+ icI)y) = 0

for all x ∈ D(A). Let
x := y .

Thus,
((A+B + icI)y, (A+ icI)y) = 0 .

This gives
||(A+ icI)y||2 + (By,A+ icI)y) = 0 .

Now follows simple estimate, using (
est2
4.1):

||(A+ icI)y||2 = |(By,A+ icI)y)| ≤ ||By|| ||(A+ icI)y||

implies
||(A+ icI)y|| ≤ ||By||

and
||(A+ icI)y||2 ≤ ||By||2 ≤ α2||Ay||2 + C2||y||2

But, due to symmetry of A,

||A+ icI)y||2 = ||Ay||2 + c2||y||2 .

Therefore,
(c2 − C2)||y||2 ≤ (α2 − 1)||Ay||2 ≤ 0

Since c > C, this gives y = 0 and, therefore, h = 0.
The same works for A+B − icI, therefore, A+B is self-adjoint.

Self-adjoint Laplacian in Rn (n = 3)
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Consider the Laplace operator

−∆ = −
3∑

n=1

∂2

∂2xn
.

Let F : L2(R3) → L2(R3) be the Fourier transform (reminder: it is a unitary operator):

(Fu)(y) =
1

(2π)3/2

∫
R3

e−ixyu(x) dx =: û(y)

One has

F (
1

i
∂xku) = ykF (u) = ykû(y)

(cf. 1
i
d
dx

in Section 2.1)

F (−∆u) = (
3∑

k=1

y2k)Fu

−∆zu(z) = F−1
y→z

3∑
k=1

y2kFx→yu(x)

Let Ã be the self-adjoint operator of multiplication by
∑3

k=1 y
2
k in L2(R3).

D(Ã) = {v ∈ L2(R3) : (
3∑

k=1

y2k)v ∈ L2}

Then A := F−1ÃF (=: −∆) is self-adjoint with

D(A) = W 2
2 (R3) = H2(R3)

||u;H2(R3)||2 =
∫
R3

|û(y)|2(1 + |y|2)2dy

C∞
0 (R3) is dense in H2(R3)

Theorem 3. Let V = V1+V2, where V1 ∈ L2(R3) and V2 ∈ L∞(R3). Then the operator

H = −∆+ V (x)

is self-adjoint (H : L2(R3) → L2(R3); D(H) = H2(R3)).

End of Lecture 9

Lecture 10

Proof. We are to prove that the operator (of multiplication by) V1+V2 is α-bounded
w. r. t. −∆ with α < 1.

The term V2 ∈ L∞ is of no interest, since

||V2u||2 ≤ ||V2||∞||u||2 ≤ C||u||2 .
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(Here || · ||2 is the L2-norm, || · ||∞ is the L∞-norm.)
Thus, let us estimate the norm of ||V1u|| for u ∈ D(−∆) = H2(R3).
Let f(= V2) ∈ L2, u ∈ C∞

0 (R3) (which is dense in H2).
We have

||fu||2 ≤ ||f ||2||u||∞ ≤ 1

(2π)3/2
||f ||2||û||1

Reminder:

u = F−1û =
1

(2π)3/2

∫
R3

û(ξ)eiξxdξ

|u(x)| ≤ 1

(2π)3/2

∫
R3

|û(ξ)| dξ

Moreover,
||û||1 = ||(1 + |y|2)−δ(1 + |y|2)δû||1 ≤

(Cauchy inequality)
≤ ||(1 + ||y|2)−δ||2||(1 + |y|2)δû||2

for any δ such that the integral ∫
R3

dy

(1 + |y|2)2δ

converges, that is for 2δ > 3/2 or δ > 3/4 (and 3/4 < 1 !!!!).
Therefore,

||û||1 ≤ C||(1 + |y|2)δû||2
with some δ between 3/4 and 1 (strictly less than one!!).

Now follows the central point:
Clearly, for 0 < δ < 1

xδ ≤ ϵx+ C(ϵ)

for any ϵ > 0. (Make a picture: the graphs of xδ and ϵx. Then move the second graph
up, adding C.)

Therefore,

(1 + |y|2)δ ≤ ϵ(1 + |y|2) + C(ϵ)

and

||û||1 ≤ C||(ϵ(1 + |y|2) + C(ϵ))û||2 ≤ ϵC|| |y|2û||2 + C C(ϵ)||u||2 ≤

≤ ϵC|| −∆u||2 + C1(ϵ)||u||2
Finally,

||(V1 + V2)u||2 ≤ Cϵ|| −∆u||2 + C(ϵ)||u||2 ,

where Cϵ < 1 (!!!) for sufficiently small ϵ.
Main application:
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−∆− e2

r

with domain H2(R3) is self-adjoint.

1

r
= χ{|y|≤1}

1

r
+ (1− χ{|y|≤1})

1

r
= V1 + V2

with V1 ∈ L2(R3), V2 ∈ L∞(R3).
Information: With slightly more effort (the same ideas!) one can prove Kato’s

famous result:
(x1, . . . , xn) ∈ R3n, xk ∈ R3. The operator

−
n∑
k=1

∆xk −
n∑
k=1

ne2

|xk|
+

n∑
k<l

e2

|xk − xl|

in L2(R3n) is self-adjoint. (Atom with n electrons and nucleus of the charge +ne; more
precise: essentially self-adjoint on C∞

0 (R3n). See Theorem X.16 in the Reed-Simon book
(easy reading with your present knowledge).)

5 Von Neumann Theory of Self-adjoint Extensions

5.1 Deficiency indices of a symmetric operator

Let A be a closed operator and let

∀x ∈ D(A) ||Ax|| ≥ c||x||

with some c > 0. Then as in Step 1 of Proposition 20 on p. 40 one proves that R(A) is
a closed subspace of H.

Consider an operator B with D(B) ⊃ D(A) subject to the estimate

||Bx|| ≤ α||Ax||

for any x ∈ D(A) with α < 1.

Proposition 21. 1. R(A+B) is a closed subspace of H,

2. dimR(A+B)⊥ = dimR(A)⊥

(or, what is the same, codimR(A+B) = codimR(A)).

Proof.
1. B is α-bounded w. r. t. A, α < 1, A is closed, therefore, A+ B is closed (Prop.

19). On the other hand

||(A+B)x|| ≥ ||Ax|| − ||Bx|| ≥ (1− α)||Ax||.

This proves that R(A+B) is closed.
2. Let

H1 = R(A+B)⊥; H2 = R(A)⊥ .
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Lemma 13. Let H1, H2 be finite-dimensional subspaces of H and let

dimH1 > dimH2.

Then there exists f ∈ H1, f ̸= 0 such that f⊥H2.
(Clearly, in the case dimH1 = ∞ and dimH2 <∞ the statement is also true).

Proof. Simple linear algebra: if m < n then a homogeneous system

n∑
k=1

(fk, gl)xk = 0; l = 1, 2, . . .m

(where {fk} is a basis in H1; {gl} is a basis in H2) with m equations and n unknowns
always has a non-trivial solution.

Now assume that dimH2 > dimH1.
Using lemma, consider f ∈ H2 = R(A)⊥, f ̸= 0 such that f⊥H1 = R(A + B)⊥.

Since R(A+B) is closed, f ∈ R(A+B), therefore,

f = (A+B)y

with y ∈ D(A). In particular (since f = (A+B)y ∈ R(A)⊥),

(Ay, (A+B)y) = 0

and

0 = ||Ay||2 + (Ay,By) ≥ ||Ay||2 − ||Ay|| ||By|| ≥ (1− α)||Ay||2 ≥ c(1− α)||y||2

Thus, y = 0 and, therefore, f = 0 which gives a contradiction.
Assume dimH2 < dimH1.
Using lemma, take g ∈ R(A + B)⊥, g ̸= 0 such that g⊥R(A)⊥. Then g ∈ R(A),

g = Ax for some x ∈ D(A). Thus

((A+B)x,Ax) = 0

and x = 0 as before. Thus g = 0 and we get a contradiction.
Immediate application to symmetric operators:
Let A be a closed symmetric operator. Then (as in

est2
4.1; symmetry suffices there, no

need to require self-adjointness)

||(A− zI)x|| ≥ |ℑz| ||x|| .

Therefore, R(A− z) is a closed subspace of H for ℑz ̸= 0.
Define

βz := dimR(A− zI)⊥ .

Now it is clear that

βz is constant in the upper and the lower half-planes.
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Proposition 22.
βz|ℑz>0 = const1; βz|ℑz<0 = const2

In fact
A− zI = (A− z0I) + (z − z0)I

||(A− z0I)x|| ≥ |ℑz0| ||x||

Thus, consider
A := A− z0I,

B := (z − z0)I

and make use of Proposition 21.
One has

||Bx|| = ||(z − z0)x|| = |z − z0| ||x|| ≤
|z − z0|
|ℑz|

||(A− z0)x|| ≤ α||Ax||

for
|z − z0| < α|ℑz0| .

The rest is standard. Take two points in H+ and a contour γ connecting them and lying
in H+, γ is compact and covered by disks, take finite sub-covering, etc.

Now one can introduce the following definition.

A closed symmetric operator

n+ := dimR(A− λI)⊥; ℑλ < 0

n− := dimR(A− λI)⊥; ℑλ > 0

0 ≤ m,n ≤ +∞

Definition 11. (n+, n−) are called deficiency indices of a symmetric closed operator A.

Reminder

D(T ) = H

H = R(T )⊕KerT ∗

Proposition 23. 1. A = A∗ =⇒ n− = n+ = 0

2. If A is a closed symmetric operator then

n+ = n− = 0 =⇒ A = A∗

End of Lecture 10

Lecture 11
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Proof. 1. One has

H = R(A− iI)⊕Ker (A− iI)∗ = R(A− iI)⊕Ker (A+ iI) .

On the other hand R(A + iI) is closed and Ker (A + iI) = 0 (||(A + iI)X|| ≥ ||x||).
Therefore, R(A− iI) = H and n− = 0.

Similarly, R(A+ iI) = H and n+ = 0.
2. One has R(A+ iI) = R(A− iI) = H (since both are closed with zero orthogonal

complement; closeness of A matters!). Criterion of self-adjointness (page 11) implies
A = A∗.

Once again:

A symmetric, closed (densely defined)

n+ = n− = 0 ⇔ A = A∗

Remark 1.
n+ = dimR(A− λI)⊥ = dimKer (A∗ − λ̄I); ℑλ < 0

n− = dimR(A− λI)⊥ = dimKer (A∗ − λ̄I); ℑλ > 0

5.2 Self-adjoint extensions of symmetric operators

From now on A is a closed symmetric operator.
Reminder 1. D(T ) = H; H = R(T )⊕KerT ∗:

y ∈ R(T )⊥ ⇐⇒ ∀x ∈ D(T ) (Tx, y) = 0 ⇐⇒ y ∈ D(T ∗) and T ∗y = 0 ⇐⇒ y ∈ KerT ∗

Reminder 2.
n+ = dimR(A+ iI)⊥ = dimKer (A∗ − iI)

n− = dimR(A− iI)⊥ = dimKer (A∗ + iI)

(dimR(A − λI)⊥ is independent of λ with ℑλ < 0 and coincides with n+. Take
λ = −i, etc.)

Definition 12. Introduce the closed subspaces

K+ := R(A+ iI)⊥ = Ker (A∗ − iI) ⊂ D(A∗)

K− := R(A− iI)⊥ = Ker (A∗ + iI) ⊂ D(A∗)

Clearly,
∀x ∈ K± A∗x = ±ix

Proposition 24. Let A1 be a closed and symmetric operator such that

A ⊂ A1 .

Then
A1 ⊂ A∗
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Proof.
A1 ⊃ A =⇒ A∗

1 ⊂ A∗ .

But A1 is symmetric, so A1 ⊂ A∗
1. Therefore, A1 ⊂ A∗.

Thus,

Domains of all symmetric extensions of A are subspaces of D(A∗).
A∗ extends any symmetric extension of A.
Therefore, D(A∗) is often called the maximal domain.

Reminder 3. A∗ is not symmetric if A is not self-adjoint.
(Clear: If A∗ is symmetric then A∗ ⊂ (A∗)∗ = Ā = A ⊂ A∗ and A = A∗)

We are going to describe all closed symmetric extensions of A. (If n+ = n− = 0 then
A = A∗ and there are no non-trivial closed symmetric extensions of A due to Proposition
24.)

5.2.1 A-orthogonality

Define new hermitian product on D(A∗):
Let x, y ∈ D(A∗)

⟨⟨x, y⟩⟩A := (x, y) + (A∗x,A∗y)

(cf. Section 1.2; Since A∗ is closed, D(A∗) is a Hilbert space w. r. t. ⟨⟨·, ·⟩⟩)
Thus, we have the notions of A-orthogonality and A-closedness. (It is better to say

A∗-orthogonality, of course. In what follows the index A will be often omitted.)

x⊥Ay = 0 ⇐⇒ ⟨⟨x, y⟩⟩ = 0

M ⊂ D(A∗) is A-closed ⇐⇒ M
A
= M (closure is taken in A-norm)

Moreover, introduce the sesquilinear form on D(A∗):

[x, y] = (A∗x, y)− (x,A∗y)

Definition 13. A linear subspace L of D(A∗) is called A-symmetric if

∀x, y ∈ L [x, y] = 0

Example. L = D(A) is A-symmetric.
(Since A is symmetric, A ⊂ A∗)

MAIN OBSERVATION (tautological)
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A ⊂ A1

A1 is symmetric and closed

if and only if

A1 = A∗
∣∣∣
L
,

where L is A-closed and A-symmetric subspace of D(A∗) containing D(A)
(D(A∗) > L > D(A)).

We are to describe all A-closed and A-symmetric subspaces of D(A∗) contain-
ing D(A).

5.2.2 The First John von Neumann Formula

Once again:
K+ := Ker (A∗ − iI) ⊂ D(A∗)

K− := Ker (A∗ + iI) ⊂ D(A∗)

Proposition 25. D(A), K± are A-closed and

D(A∗) = D(A)⊕A K− ⊕A K+ (5.1) JvN1

Proof. Since A is a closed operator and A ⊂ A∗, D(A) is A-closed. Since K±
are closed in the ordinary H-norm (as orthogonal complements to R(A± iI)), they are
closed in A-norm (explain!).

Step 1. The sum in (
JvN1
5.1) is in fact A-orthogonal:

Let x ∈ D(A) and y ∈ K+. Then

⟨⟨x, y⟩⟩A = (x, y) + (A∗x,A∗y) = (x, y) + (A∗x, iy) =

= (x, y) + (Ax, iy) = (x− iAx, y) = −i(ix+ Ax, y) = 0

since K+ = R(A+ iI)⊥.
Similarly ⟨⟨x, y⟩⟩A = 0 if x ∈ D(A) and y ∈ K−.
Let x ∈ K+ and y ∈ K−. Then

⟨⟨x, y⟩⟩A = (x, y) + (A∗x,A ∗ y) = (x, y) + (ix,−iy) = 0 .

Step 2. The sum is the whole D(A∗). Let h ∈ D(A∗) be A-orthogonal to the sum at
the right hand side of (

JvN1
5.1).

Then h⊥AD(A):
∀x ∈ D(A)

(x, h) + (A∗x,A∗h) = 0

Since Ax = A∗x this gives
(Ax,A∗h) = −(x, h)
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and, therefore, A∗h ∈ D(A∗) and

A∗A∗h = −h

which is equivalent to
(A∗ + iI)(A∗ − iI)h = 0

which implies
(A∗ − iI)h ∈ Ker (A∗ + iI) = K−

We will show that
(A∗ − iI)h = 0 . (5.2) kplus

That will imply that h ∈ K+. Since h is A-orthogonal to the r. h. s. of (
JvN1
5.1), this gives

h = 0 what is needed.
It suffices to show that ∀y ∈ K−

(y, (A∗ − iI)h) = 0

(K− is closed in H-norm!!! So, here stands hermitian product in H!)
In fact, we have

(y, (A∗ − iI)h) = (y, A∗h) + i(y, h) =

(use −iy = A∗y!)
= (iA∗y, A∗h) + i(y, h) = i⟨⟨y, h⟩⟩A = 0

(since h is A-orthogonal to the r. h. s. of (
JvN1
5.1).

Informally: Due to ”JvN-I” (= (
JvN1
5.1), A-symmetric A-closed subspaces of

D(A∗) containing D(A) are completely defined by their ”K+ ⊕A K−”-part.

Formally:

Proposition 26. Let

N = {S < K+ ⊕A K− : S is A− closed and A− symmetric }

M = {L < D(A∗) : L ⊃ D(A), L is A− closed and A− symmetric }

Define the map
map : N → M

via
map(S) = D(A)⊕A S .

Then this map is correctly defined and is one to one.

Proof. The only thing that is not immediate:

D(A)⊕A S is A-symmetric if S is A-symmetric.
Take two elements, ϕ+ϕ1 and ψ+ψ1 of D(A)⊕AS with ϕ, ψ ∈ D(A) and ϕ1, ψ1 ∈ S.
Then

[ϕ+ ϕ1, ψ + ψ1] = [ϕ, ψ] + [ϕ1, ψ1] + [ϕ, ψ1] + [ψ, ϕ1]
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and the first two terms at the right are equal to zero. On the other hand

[ϕ, ψ1] = (A∗ϕ, ψ1)− (ϕ,A∗ψ1) = (Aϕ, ψ1)− (ϕ,A∗ψ1) = 0

because ψ1 ∈ D(A∗). Similarly, [ψ, ϕ1] = 0. Thus,

[ϕ+ ϕ1, ψ + ψ1] = 0

and D(A)⊕A S is A-symmetric.
(Just in case it is not clear:
Back:
Let L ⊃ D(A), L - A-closed and A-symmetric. Take

S := L ∩ (K− ⊕A K+)

Let ϕ ∈ L. Then
ϕ = ϕ0 + ϕ1

with ϕ0 ∈ D(A) ⊂ L and ϕ1 ∈ K− ⊕A K+. This implies ϕ1 ∈ L and, therefore, ϕ1 ∈ S.
Thus,

L = D(A)⊕A S .)

5.3 The Second John von Neumann Formula

We deal only with case n−, n+ < +∞.
We will show that there is one to one correspondence between

� Closed symmetric extensions A1(⊃ A)

and

� Pairs:
(A, U)

where A is a subspace of K+ (in our case it is always finite-dimensional) and

U : A → K−

is an isometric operator (not necessarily surjective!)

defined as follows:
(A, U) 7→ extension AU

where
D(AU) = D(A) + {ϕ+ Uϕ : ϕ ∈ A}

AU(x+ ϕ+ Uϕ) = Ax+ iϕ− iUϕ

where x ∈ D(A), ϕ ∈ A.
Remark. Notice that AUϕ− iϕ is the common action of A∗ on K+ and AU(Uϕ) =

−iUϕ is the common action of A∗ on K−.
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Key Observation:

Let A1 ⊃ A be closed symmetric extension,

D(A1) = D(A)⊕A S

with S being A-closed A-symmetric subspace of K− ⊕A K+. Let

ϕ ∈ S, ϕ = ϕ− + ϕ+; ϕ± ∈ K± .

Then

||ϕ−|| = ||ϕ+|| . (5.3) unita

It is a straightforward calculation using the rule of action of A∗ on K±:
Since S is A-symmetric, one has

[ϕ, ϕ] = 0,

therefore,

0 = (A∗ϕ, ϕ)− (ϕ,A∗ϕ) = (A∗ϕ+ + A∗ϕ−, ϕ+ + ϕ−)− (ϕ+ + ϕ−, A
∗ϕ+ + A∗ϕ−) =

= (iϕ+ − iϕ−, ϕ+ + ϕ−)− (ϕ+ + ϕ−, iϕ+ − iϕ−) =

= 2i(ϕ+, ϕ+)− 2i(ϕ−, ϕ−)

and (
unita
5.3) follows.

Now we may construct the needed correspondence. We are considering only ex-
tensions with dimS < +∞ (therefore, dimA is also finite): this matters only in case
n+ = n− = ∞)

1)Extension (A∗ ⊃)A1(⊃ A) =⇒ Pair (A, U).

We have
D(A1) = D(A)⊕A S

S < K+ ⊕A K−

Let
A := Proj⊥A

K+
(S)

Remark.Clearly, this projection

Proj⊥A

K+
→ A

is one to one: if (ϕ+, ψ
1
−) ∈ S and (ϕ+, ψ

2
−) ∈ S then (0, ψ1

− − ψ2
−) ∈ S and ||0|| =

||ψ1
− − ψ2

−|| and ψ1
− = ψ2

−.

A is finite dimensional, and, therefore is closed in any norm.

U : ϕ+ 7→ ϕ−

57



is an isometry
U : A → U(A)

according to (
unita
5.3). Thus,

D(A1) = {x+ ϕ+ + Uϕ+ : x ∈ D(A), ϕ+ ∈ A}

A1(x+ ϕ+ + Uϕ+) = Ax+ iϕ+ − iUϕ+

(The second JvN formula)

2) Pair (A, U) =⇒ Extension A1

Let A < K+ (finite dimensional, but we may assume only || · ||H-closedness) and let

U : A → K−

be a (not necessarily surjective) isometry.
Define the corresponding extension A1 and its domain via the second JvN formula:

D(A1) = {x+ ϕ+ + Uϕ+ : x ∈ D(A), ϕ+ ∈ A}

A1(x+ ϕ+ + Uϕ+) = Ax+ iϕ+ − iUϕ+

End of Lecture 11

Lecture 12

Proposition 27. Thus constructed D(A1) is A-closed and A-symmetric. Then, due to
MAIN OBSERVATION from §5.2.1, A1 is a closed symmetric extension of A.

Proof. Since A is || · ||-closed it is || · ||A-closed. This implies that D(A1) is A-closed.
A-symmetry:
In Proposition 26 we proved that D(A)⊕A S is symmetric if S is A-symmetric. So

suffices to show that
[ϕ+ + Uϕ+, ψ+ + Uψ+] = 0

if ϕ+, ψ+ ∈ A.
This is again a straightforward calculation:

[ϕ+ + Uϕ+, ψ+ + Uψ+] =

= (A∗(ϕ+ + Uϕ+), ψ+ + Uψ+)− (ϕ+ + Uϕ+, A
∗(ψ+ + Uψ+)) =

(iϕ+ − iUϕ+, ψ+ + Uψ+)− (ϕ+ + Uϕ+, iψ+ − iUψ+) = . . .

= 2i
(
(ϕ+, ψ+)− (Uϕ+, Uψ+)

)
(5.4) zero

Due to relation (z, z) = (Uz, Uz) and the polarization identity

(Ux, Uy) =
1

4

∑
ϵ=±1,±i

ϵ(U(x+ ϵy), U(x+ ϵy)) =
1

4

∑
ϵ=±1,±i

ϵ(x+ ϵy, x+ ϵy) = (x, y)

expression (
zero
5.4) vanishes.

58



5.3.1 Self-adjoint extensions

Now let us compare deficiency indices of the symmetric operator A and its extension
A1. We have

(A1 + iI)(x+ ϕ+ + Uϕ+) = Ax+ iϕ+ − iUϕ+iIx+ iϕ+iUϕ+ =

= (A+ iI)x+ 2iϕ+

with (A+ iI)x ∈ R(A+ iI) and 2iϕ+ ∈ K+ = R(A+ iI)⊥.
Thus,

codimR(A1 + iI) = codimR(A+ iI)− dimA

Similarly,
(A1 − iI)(x+ ϕ+ + Uϕ+) = (A− iI)x− 2iUϕ+

with (A− iI)x ∈ R(A− iI) and 2iUϕ+ ∈ K− = R(A− iI)⊥ . Thus,

codimR(A1 − iI) = codimR(A− iI)− dimA

Equivalently:

n+(A1) = n+(A)− dimA

n−(A1) = n−(A)− dimA

Thus,

n−(A) ̸= n+(A) =⇒ n−(A1) ̸= n+(A1)

and

n−(A) ̸= n+(A) =⇒ the operator A does not have self-adjoint extensions

and

If n+(A) = n−(A) (̸= ∞)
then any isometry

U : A = K+ → K−

(dimA = n+(A) = n−(A)!!!)
defines a self-adjoint extension of A and all s. a. extensions are ob-

tained in this way.

Once again:
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For a self-adjoint extension Ã of a closed symmetric operator A one has

D(Ã) = {x+ ϕ+ + Uϕ+ : x ∈ D(A), ϕ+ ∈ K+}

Ã(x+ ϕ+ + Uϕ+) = Ax+ iϕ+ − iUϕ+

with some unitary bijection
U : K+ → K−

5.3.2 Example

We use the results of Section 2. Consider a closed symmetric operator A = i d
dx

(we
suppress ”-” for convenience) in L2([0, 1]) with D(A) = H1

0 [0, 1]. Then D(A∗) = H1[0, 1]
and A∗u = iu′.

Let u ∈ K+ = Ker (A∗ − iI). Then

iu′ − iu = 0

and u = Cex . Similarly,

K− = Ker (A∗ + iI) = {Ce−x}

Thus,
n−(A) = n+(A) = 1

Any unitary operator

U : K+ = LinSpan (ex) → K− = LinSpan (e−x)

is of the form
f+ 7→ eiαf−

with f± ∈ K±, ||f±|| = 1. Since ∫ 1

0

e2x dx =
e2 − 1

2

and ∫ 1

0

e−2x dx =
e2 − 1

2e2
,

one gets

f+ =

√
2

e2 − 1
ex

and

f− = e

√
2

e2 − 1
e−x

Thus all the self-adjoint extensions, Aα ⊃ A are numbered by α ∈ [0, 2π). One has

D(Aα) = {ϕ+ C

√
2

e2 − 1
ex + Ceiαe

√
2

e2 − 1
e−x : ϕ ∈ H1

0 , C ∈ C}
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Now, observe that for ψ ∈ D(Aα) one has

ψ(0) = 0 + C

√
2

e2 − 1
+ Ceiαe

√
2

e2 − 1

ψ(1) = 0 + C

√
2

e2 − 1
e+ Ceiα

√
2

e2 − 1

and
ψ(1)

ψ(0)
=

1 + eiαe

e+ eiα
=: γ .

Clearly,
|γ| = 1

which proves the claim 1) from the end of Section 2.1 (before Definition 9). Claim 2) is
left as an exercise: see hints below.

Hints: 1)Solve {
u′ − iλu = 0

u(1) = γu

This gives u = Ceiλt; γ = e−iϕ = e−λ ⇐⇒ λ = λk = ϕ+ 2πk.
2)Prove that λ ̸= λk =⇒ ∃(Aα − λI)−1 which is bounded and defined on L2[0, 1],

(Aα − λI)−1f = eiλt
[

1

eiϕ − eiλ

∫ 1

0
eiλsif(s) ds+

∫ t

0
e−iλsif(s) ds

]
.

END OF WINTER 2022 COURSE

6 Pseudolaplacians in Rd

6.1 Sobolev spaces

For positive integer k define

Hk(Rn) = W k
2 (Rn) := {f ∈ L2 : ∀α : |α| ≤ k Dαf ∈ L2}

or
{u ∈ S ′(Rn) : (1 + |ξ|2)k/2û ∈ L2(Rn} .

The latter definition extends to any real s:

Hs(Rn) := {u ∈ S ′(Rn) : (1 + |ξ|2)s/2û ∈ L2(Rn} .

We will need three standard Sobolev’s embedding theorems

Proposition 28. 1. s > n/2 =⇒ Hs(Rn) ⊂ Cb(Rn) (b means bounded)

2. 0 < α < 1 =⇒ Hn/2+α ⊂ Lipα(Rn)

(Lipα(Rn) ⇐⇒ u is bounded and |u(x+ y)− u(y)| ≤ C|y|α)
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3. u ∈ Hn/2+1(Rn) =⇒

|u(x+ y)− u(x)| ≤ C|y|
(
log

1

|y|

)1/2

(still → 0 as y → 0.)

Proof.
1) Simple:

|u(x)| =
∣∣∣∣∫

Rn

eixξû(ξ) dξ

∣∣∣∣ ≤ ∫
Rn

|û(ξ)|dξ =

∫
Rn

|û(ξ)|(1+|ξ|2)s/2(1+|ξ|2)−s/2dξ ≤
(∫

Rn

|û(ξ)|2(1 + |ξ|2)sdξ
)1/2(∫

Rn

dξ

(1 + |ξ|2)s

)1/2

and the last factor is finite if s > n/2.
2) and 3)Similarly but longer:

|u(x+ y)− u(x)| =
∣∣∣∣∫

Rn

û(ξ)eixξ(eiyξ − 1) dξ

∣∣∣∣ ≤
≤
∫
Rn

|û(ξ)|eiyξ − 1| dξ ≤

≤
(∫

Rn

|û(ξ)|2(1 + |ξ|2)sdξ
)1/2

×

×
(∫

Rn

(1 + |ξ|2)−s|eiyξ − 1|2 dξ
)1/2

with s = n/2 + α. Thus, one has to estimate the last factor.
WLOG one can assume that |y| ≤ 1/2. Notice that
|iyξ| ≤ 1 if |ξ| ≤ 1/|y| and for |z| ≤ 1 one has

∣∣ ez−1
z

∣∣ ≤ C.
Therefore ∫

Rn

(1 + |ξ|2)−n/2−α|eiyξ − 1|2 dξ ≤

, ∫
|ξ|≤1/|y|

(1 + |ξ|2)−n/2−α
∣∣∣∣eiyξ − 1

iyξ

∣∣∣∣2 |y|2|ξ|2 dξ+
4

∫
|ξ|≥1/|y|

(1 + |ξ|2)−n/2−αdξ ≤

≤ C(A(y)|y|2 +B(y))

with

A(y) =

∫
|ξ|≤1/|y|

(1 + |ξ|2)−n/2−α|ξ|2 dξ

and

B(y) =

∫
|ξ|≥1/|y|

(1 + |ξ|2)−n/2−αdξ
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Since |y| ≤ 1/2 and 1/|y| ≥ 2,

A(y) = (

∫ 1

0

+

∫ 1/|y|

1

) dr ≤

∫ 1

0

(1 + r2)−n/2−αr2rn−1dr+

(integrand ∼ rn+1 near 0, therefore, this part is ≤ C)

+

∫ 1/|y|

1

(r2 + r2)−n/2−αr2rn−1 dr

(this part is ≤ C
∫ 1/|y|
1

r1−2α dr)

≤ C +

{
C|y|2α−2, 0 < α < 1

C log 1
|y| , α = 1

Additionally.

B(y) ≤ C

∫ ∞

1/|y|
(1 + r2)−n/2−αrn−1 dr ≤

C

∫ ∞

1/|y|
r−2α−1 dr = C|y|2α

Finally, ∫
Rn

(1 + |ξ|2)−n/2−α|eiyξ − 1|2 dξ ≤

≤ C

(
|y|2 + |y|2

{
|y|2α−2

log 1
|y|

+ |y|2α
)

≤

C

{
|y|2α, 0 < α < 1

|y|2 log 1
|y| , α = 1

We will need also

Proposition 29. C∞
0 (Rn) is dense in W k

2 (Rn).

Proof (a sketch).
1) Take smooth χR with support in {|x| ≤ R + 1} and χ(x) = 1 for |x| ≤ R. Then

χRu→ u as R → ∞ for any u ∈ W k
2 (Rn). 2)Take ωϵ: suppωϵ → {0},

∫
Rn ωϵ = 1. Then

ωϵ ∗ (χRu) → χRu

as ϵ→ 0 in W k
2 (Rn). It remains to notice that

ωϵ ∗ (χRu) ∈ C∞
0 (Rn)

for any u ∈ W k
2 (Rn).
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6.2 Pseudolaplacians

Consider the Laplace operator ∆ in L2(Rd) with

D(∆) := C∞
0 (Rd \ {O}) .

We will show that this operator is essentially self-adjoint for d ≥ 4 and has infinitely
many self-adjoint extensions for d ≤ 3. The latter extensions are called ”pseudolapla-
cians”. They present mathematical models for Schroedinger operators with δ-function
potential:

−∆+ δ .

6.2.1 Domain of the closure for d ≥ 4

Proposition 30. Let

L := ∆
∣∣∣
C∞

0 (Rn)

and let

d ≥ 4

Then
D(L) = W 2

2 (Rd) = D(∆)

where ∆ is the standard self-adjoint Laplacian in Rd.

Proof. Observe that, since the graph norm |||u|||2 = ||u||2 + ||∆u||2 is equivalent to
theW 2

2 -norm, one has the inclusion D(L) ⊂ W 2
2 . Since C

∞
0 (Rd) is dense inW 2

2 it suffices
to show that it is possible to approximate any function ψ from C∞

0 (Rd) by functions
un ∈ C∞

0 (Rd \ {O}) in the W 2
2 -norm (or, what is the same, in the graph norm).

Let ϕ(x) = ϕ̃(|x|), where ϕ̃(t) is smooth, vanishes for |t| > 1 and equals 1 for
|t| ≤ 1/2. Define

ϕϵ(x) := 1− ϕ(
x

ϵ
)

(ϕϵ equals zero in ϵ/2-ball centred at the origin and equals one outside ϵ-ball).
We will show that C∞

0 (Rd \ {O}) ∋ ϕϵψ → ψ in W 2
2 if d > 4 (or, what is the same,

ϕϵψ → ψ and ∆(ϕϵψ) → ∆ψ in L2 as ϵ→ 0).
For d = 4 a less straightforward method is needed.
1)||ϕϵψ − ψ|| → 0.
One has

||ϕϵψ − ψ||2 =
∫
Rd

|(1− ϕ(
x

ϵ
))ψ − ψ|2 =

∫
Rd

|ϕ(x
ϵ
)|2|ψ(x)|2 dx ≤

≤ C

∫
Rd

|ϕ(x
ϵ
)|2dx = ϵdC

∫
Rd

|ϕ(x)|2 dx→ 0

2)∆(ϕϵψ) → ∆ψ.
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One has

||∆(ϕϵψ)−∆ψ|| = ||(∆ϕϵ)ψ +∇ϕϵ · ∇ψ + ϕϵ∆ψ −∆ψ|| ≤

||(∆ϕϵ)ψ||(:= A) + ||∇ϕϵ · ∇ψ||(:= B) + ||ϕϵ∆ψ −∆ψ||(:= C)

Due to Step 1, C → 0 as ϵ→ 0.

B2 = ||∇ψ∇(1− ϕ(x/ϵ))||2 ≤ c

∫
Rd

|∇xϕ(x/ϵ)|2 dx = c
1

ϵ2

∫
Rd

|(∇ϕ)(x/ϵ)|2 dx =

c
1

ϵ2
ϵd
∫
Rd

||∇ϕ|2 → 0

(since d− 2 > 0.)
Similarly

A2 ≤ c

∫
Rd

|∆xϕ(x/ϵ)|2 = cϵd−4

∫
Rd

|∆ϕ|2 → 0

(under the condition d− 4 > 0.)
For the case d = 4 (when the last estimate does not work) a special trick is needed.

The same works with improved

ϕϵ(x) := 1− ϕ̃

([
|x|
ϵ

]ϵ)
where ϕ̃ is as above (in what follows we omit tilde).

1)

||ϕϵψ − ψ||2 ≤ c

∫
R4

|ϕ
([

|x|
ϵ

]ϵ)
|2dx = c1

∫ ∞

0

|ϕ
([r
ϵ

]ϵ)
|2r3 dr =

(t := (r/ϵ)ϵ; dr = t1/ϵ−1)

= cϵ3
∫ 1

0

|ϕ(t)|2t4/ϵ−1dt ≤

(suppϕ ⊂ [0, 1])

≤ c2ϵ
3

∫ 1

0

|ϕ(t)|2 dt→ 0

2)The most difficult part is to estimate the term A with ∆xϕ
([

|x|
ϵ

]ϵ)
.

∆ =

(
∂

∂r

)2

+
d− 1

r

∂

∂r
+

1

r2
δ

with d = 4 and spherical part, δ, playing no role (all functions depend on radial variable
only).

∂

∂r
ϕ
([r
ϵ

]ϵ)
= ϕ′

([r
ϵ

]ϵ)(r
ϵ

)ϵ−1 1

ϵ
ϵ

(
∂

∂r

)2

ϕ
([r
ϵ

]ϵ)
= ϕ′′

([r
ϵ

]ϵ)(r
ϵ

)2ϵ−2

+ ϕ′
([r
ϵ

]ϵ)(r
ϵ

)ϵ−2 ϵ− 1

ϵ
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∆xϕ

([
|x|
ϵ

]ϵ)
=

ϕ′′
([r
ϵ

]ϵ)
r2ϵ−2ϵ2−2ϵ + (d− 1)rϵ−2ϵ1−ϵϕ′

([r
ϵ

]ϵ)
+ ϕ′

([r
ϵ

]ϵ)
rϵ−2ϵ1−ϵ(ϵ− 1) =

(d− 2)rϵ−2ϵ1−ϵϕ′
([r
ϵ

]ϵ)
+ ϕ′′

([r
ϵ

]ϵ)
r2ϵ−2ϵ2−2ϵ + ϕ′

([r
ϵ

]ϵ)
rϵ−2ϵ2−ϵ

Since ϕ′, ϕ′′ factors are bounded, only |ϵ1−ϵrϵ−2|2, |ϵ2−2ϵr2ϵ−2|2 and |rϵ−2ϵ2−ϵ|2 terms
matter. Integration goes over 0 ≤ r ≤ ϵ, jacobian is rd−1 = r3. The worst (= the
biggest) term is the first. One has∫ ϵ

0

ϵ2−2ϵr2ϵ−4r3 dr =
ϵ

2
→ 0

as ϵ→ 0.

6.2.2 Domain of the closure for d = 1, 2, 3

1)d = 3
One has

W 2
2 (R3) = H2(R3) ⊂ Lip 1/2

H3/2+1/2 ⊂ Lip 1/2

(for d = 4, 5, . . . this is wrong!) Thus,

D(L) ⊂ {ψ ∈ W 2
2 (R3) : ψ(0) = 0}

Exercise: Show that one can approximate any ψ from C∞
0 (R3) such that ψ(0) = 0

and |ψ(x)| ≤ C|x|1/2 in B(O, ϵ) in the graph norm by un ∈ C∞
0 (R3 \ {O}). Act as in

case d = 4 (take the same ψϵ).
From this exercise follows the equality

D(L) = {ψ ∈ W 2
2 (R3) : ψ(0) = 0}

2)d = 2

2 =
2

2
+ 1

Thus, the functions ψ from the domain of the closure, being in W 2
2 (R2) must satisfy

|ψ(x)| = |ψ(x)− ψ(0)| ≤ C|x|
(
log

1

|x|

)1/2

Exercise: Similarly to the case d = 3, show that

D(L) = {ψ ∈ W 2
2 (R2) : ψ(0) = 0}

3)d = 1 (Relevant to the theory of quantum graphs). Let

ψ ∈ D(L) ⊂ W 2
2 (R1) .

Then ψ′ ∈ H1(R1). Since 1 = 1
2
+ 1

2
, ψ′ ∈ Lip1/2.

D(L) = {ψ ∈ W 2
2 (R1) : ψ(0) = ψ′(0) = 0}
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6.2.3 Self-adjoint extensions of L

1) Case d ≥ 4.
We will show that K− = K+ = {0} and, thus, L is essentially self-adjoint.
Let u ∈ K+ = R(L+ iI)⊥. Then

(u, (L+ iI)f) = 0

for any f ∈ D(L) = W 2
2 (Rd). Using Plancherel theorem, one gets

(û, (|ξ|2 + i)f̂) = 0

or
(û(|ξ|2 − i), f̂) = 0

for any f ∈ W 2
2 ⊃ S(Rd).

This implies
û(|ξ|2 − i) = 0

and u = 0.
(and similarly for K−.)
2)Case d = 2, 3.
We will show that in this case n+ = n− = 1 and find all the self-adjoint extensions.

Let u ∈ K+. As before, this implies

(û, (|ξ|2 + i)f̂) = 0

for any f ∈ H2 such that f(0) = 0 or, what is the same, for any f̂ ∈ (1 + |ξ|2)−1L2(Rd)
such that

0 =

∫
Rd

f̂(ξ) dξ

(the last integral equals to f(0) due to Fourier inversion formula).
Choose ϕ ∈ S(Rd) such that ∫

Rd

ϕ̂(ξ) dξ = 1 .

Then for any f ∈ H2 the function

g = f̂ −
∫
Rd

f̂(ξ) dξ · ϕ̂

belongs to (1 + |ξ|2)−1L2(Rd) and satisfies
∫
Rd g = 0.

Thus, for any f ∈ H2 = W 2
2(
û, (|ξ|2 + i)(f̂ −

∫
f̂ · ϕ̂)

)
= 0

or
((ξ|2 − i)û, f̂)− (C, f̂) = 0
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with
C = ((|ξ|2 − i)û, ϕ̂)

Therefore,
(|ξ|2 − i)û = C

and

u = CF−1

(
1

|ξ|2 − i

)
Thus, dimK+ = 1.

Similarly dimK− = 1 and

K− = {CF−1

(
1

|ξ|2 + i

)
}

Now the second JvN formula gives all the self-adjoint extensions Lθ ⊃ L via

D(Lθ) = {ϕ+ βF−1

(
1

|ξ|2 − i

)
+ βeiθF−1

(
1

|ξ|2 + i

)
: β ∈ C;ϕ ∈ W 2

2 (Rd), ϕ(0) = 0}

with θ ∈ [0, 2π).
If θ = π then we get the ordinary self-adjoint Laplacian ∆ with domain W 2

2 :

ϕ+ βF−1

(
1

|ξ|2 − i

)
+ βeiπF−1

(
1

|ξ|2 + i

)
= ϕ+ βF−1 2i

|ξ|4 + 1
∈ W 2

2 .

Moreover, on the one hand (due to JvN-2)

Lπ(ϕ+βF
−1

(
1

|ξ|2 − i

)
+βeiπF−1

(
1

|ξ|2 + i

)
) = ∆ϕ+iβF−1

(
1

|ξ|2 − i

)
−i(−1)βF−1

(
1

|ξ|2 + i

)
,

on the other hand

∆(ϕ+ βF−1

(
1

|ξ|2 − i

)
+ βeiπF−1

(
1

|ξ|2 + i

)
) = ∆ϕ+ βF−1

(
|ξ|2

|ξ|2 − i
− |ξ|2

|ξ|2 + i

)
and the right hand sides coincide.

7 Krein formula

Let A be closed symmetric with

n−(A) = n+(A) = n < +∞
and let A1 ⊃ A and A2 ⊃ A be two self-adjoint extentions of A, A∗

1 = A1, A
∗
2 = A2.

krein Proposition 31. Let λ ∈ (Spectrum (A1) ∪ Spectrum,(A2))
c then the difference of the

resolvents
R(λ;A1)−R(λ;A2)

is a finite-rank operator. It acts as follows. One has

H = R(A− λI)⊕Ker (A∗ − λ̄I)

H = R(A− λ̄I)⊕Ker (A∗ − λI)

(in case ℑλ ̸= 0 one does not need the closure).
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The operator R(λ;A1)−R(λ;A2)

1. sends R(A− λI) to zero

2. maps Ker (A∗ − λ̄I) to Ker (A∗ − λI).

Reminder: H = T ⊕ KerT ∗; R(A − λ) is closed if ℑλ ̸= 0; dimKer (A∗ − λI) =
dimKer (A∗ − λ̄I) = n.

Proof. 1) Let f ∈ R(A − λI) then f = (A − λI)x with x ∈ D(A). Since A ⊂ A1

and A ⊂ A2, one has

[(A1 − λI)−1 − (A2 − λI)−1]f = x− x = 0

If λ is real then one has to separately consider the case f ∈ R(A− λI) \ R(A − λI).
Then

[(A1 − λI)−1 − (A2 − λI)−1]f = 0

because both the resolvents are bounded operators in H.
2)Let f ∈ Ker (A∗ − λ̄I) We are to prove that

[(A1 − λI)−1 − (A2 − λI)−1]f ∈ Ker (A∗ − λI) .

Due to equality

R(A− λ̄I)⊕Ker (A∗ − λI) = H

it suffices to prove that for any h ∈ R(A− λ̄I) one has

([(A1 − λI)−1 − (A2 − λI)−1]f, h) = 0 .

This is simple:

([(A1 − λI)−1 − (A2 − λI)−1]f, h) = (f, (A1 − λ̄I)−1 − (A2 − λ̄I)−1]h) = (f, 0) = 0 .

The proposition is proved.

Now, for a fixed λ ∈ (Spectrum (A1) ∪ Spectrum,(A2))
c, choose

g1(λ), . . . , gn(λ)

- a basis of Ker (A∗ − λ)
and

g1(λ̄), . . . , gn(λ̄)

- a basis of Ker (A∗ − λ̄).
Proposition

krein
31 implies

∀f ∈ H :
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[(A1 − λI)−1 − (A2 − λI)−1]f =
n∑
k=1

ck(f)gk(λ)

where ck(·) are bounded linear functionals on h. From Riesz theorem one gets

ck(f) = (f, hk)

for some hk ∈ H.
Moreover, one has

(f, hk) = 0

for f ∈ R(A− λI), therefore,
hk ∈ Ker (A∗ − λ̄I)

or

hk =
n∑
l=1

p̄kl(λ)gl(λ̄)

which implies

[(A1 − λI)−1 − (A2 − λI)−1]f =
n∑

k,l=1

pkl(λ)(f, gl(λ̄))gk(λ).

This proves M. G. Krein’s formula for the difference of the resolvents of two self-
adjoint extensions, A1 and A2, of a given closed symmetric operator A:

R(λ;A1)−R(λ;A2) =
n∑

k,l=1

pkl(λ)( · , gl(λ̄))gk(λ) .

8 Appendix 1: Spectral theorem for compact self-

adjoint operators

Initially, this was supposed to be an introduction to the course.
To warm up we recall the most standard (contained in almost all basic texts in FA)

proof of the ST for compact s.-a. operators.
H - separable (complex) Hilbert space; A - compact symmetric (=s. a. for bounded

case) operator:
∀x, y ∈ H (Ax, y) = (x,Ay);

A(bounded) = precompact

λ - eigenvalue of A; Vλ - corresponding eigenspace (the set of all eigenvectors corre-
sponding to λ) (different eigenspaces are mutually orthogonal! - easy exercise 1). Λ -
the set of all eigenvalues of A (all are real! - easy exercise 2).
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Spectral Theorem:

H =
⊕
λ∈Λ

Vλ

(direct orthogonal sum).
Addendum:

� if Λ ∋ λ ̸= 0 then Vλ is finite dimensional

� For any ϵ > 0 Λ ∩ {|x| > ϵ} is a finite set.

Comment: KerA=V0 may be infinite dimensional (as well as finite dimensional
or even zero). If H is infinite dimensional then λ = 0 is the (only) limit point
of Λ.

One can organize the non-zero eigenvalues in the sequence λ1, λ2, . . . , such
that |λn| ≥ |λn+1| (each eigenvalue is repeated according to multiplicity).

� If {en} is the orthonormal system of eigenvectors corresponding to non-zero
eigenvalues λn (in each eigenspace an orthonormal basis is chosen: take the
union of all these bases) then ∀x ∈ H

Ax =
∑
n

λn(x, en)en

(convergence in H).

The proof models finite dimensional linear algebra: why hermitian matrices are diago-
nalizable? Trivial:

A) det (A−λI) = 0 has a solution λ1 in C (Main theorem of algebra). (In fact, real.)
So there exists an eigenvector v1. Since A is hermitian, the orthogonal complement
H1 = v⊥1 is A-invariant (easy exercise 3).

B) A1 := A
∣∣∣
v⊥1

. A1 - hermitian (easy exercise 4). Continue.

For infinite dimensional case: A) (existence of an eigenvector) is non trivial; B) is
essentially the same as in the finite dimensional case.

Proof.
Basic ingredients:
1)Polarization identity (for any linear operator A).

(Ax, y) =
1

4

∑
ϵ=±1,±i

ϵ (A(x+ ϵy), (x+ ϵy))

(Remark: mind that for us (·, ·) is anti-linear w. r. t. the second argument. Many
authors (more close to physics) use another agreement (bra -(c)ket). In that case the r.
h. s. should be changed to conjugate.)

(Easy excercise 5)
2)Parallelogram identity

||x− y||2 + ||x+ y||2 = 2||x||2 + 2||y||2

71



(Make a picture and prove - trivial exercise 6).
3) Important property: for any hermitian (= bounded self-adjoint) A

||A|| = sup||x||=1|(Ax, x)| (8.1) norm

(Exercise: ∀x (Ax, x) ∈ R iff A = A∗. Hint: Use polarization identity for the hard
part.)

Proof of (
norm
8.1). NA := sup||x||=1(Ax, x). Clearly, NA ≤ ||A|| (follows from the Cauchy

inequality.)
Let us show that ||A|| ≤ NA.
Clearly,

||A|| = sup||x||=||y||=1|(Ax, y)| . (8.2) 2

In fact, sup||x||=||y||=1|(Ax, y)| ≥ sup||x||=1(Ax,Ax/||Ax||) = sup||x||=1||Ax|| = ||A||.
The opposite inequality again follows from Cauchy.

Moreover,
||A|| = sup||x||=||y||=1|ℜ(Ax, y)| (8.3) 3

Using (
2
8.2) choose x0, y0, ||x0|| = ||y0|| = 1 such that

|(Ax0, y0)| ≥ ||A|| − ϵ

One has
(Ax0, y0) = |(Ax0, y0)|eiα

and
|ℜ(A(e−iαx0), y0)| = |(A(e−iαx0), y0)| = |(Ax0, y0)| ≥ ||A|| − ϵ

Thus,
sup||z||=||y||=1|ℜ(Az, y)| ≥ ||A||.

The opposite inequality is trivial.
Now from polarization identity

|ℜ(Au, v)| =
∣∣∣∣14(A(u+ v), u+ v)− 1

4
(A(u− v), u− v)

∣∣∣∣ ≤
1

4
(|(A(u+ v), u+ v)|+ |(A(u− v), u− v)|) ≤

1

4
(NA||u+ v||2 +NA||u− v||2) =

1

4
NA(2||u||2 + 2||v||2)

(parallelogram identity was used at the last step). Thus,

||A|| = sup||u||=||v||=1|ℜ(Au, v)| ≤ NA .

Remark. From (
norm
8.1) one gets the equality

||A∗A|| = sup||x||=1|(A∗Ax, x)| = sup||x||=1(Ax,Ax) = ||A||2
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which is important in the theory of C∗-algebras.
Now we can show that a non-zero compact s. a. operator A has an eigenvector

corresponding to the (nonzero) eigenvalue λ1 with |λ1| = ||A|| ≠ 0.
Using (

norm
8.1), choose xn, ||xn|| = 1 such that

(Axn, xn) → λ1

with |λ1| = ||A||
Informally: |(Axn, xn)| goes to maximum, therefore, Axn must be almost propor-

tional to xn and the coefficient of proportionality should be λ1.
That is true:

0 ≤ ||Axn − λ1xn||2 = (Axn − λ1xn, Axn − λ1xn) = ||Axn||2 − 2λ1(Axn, xn) + λ21 =

||Axn||2 − λ21 + o(1) ≤ ||A||2 − λ21 + o(1) = o(1)

Thus, Axn − λ1xn → 0.
Now we will use compactness of A. Since ||xn|| = 1, WLOG Axn → v1 and, therefore,

λ1xn → v1 and
xn → v1/λ1 .

Passing to n→ ∞, we get
Av1/λ1 − v1 = 0

or
Av1 = λ1v1.

(Mind that λ1 ̸= 0 and ||xn|| = 1, therefore,v1 ̸= 0.)
The first eigenvector of A is constructed. The rest is more or less simple.
Exercise 7: Let V be the closure of the linear span of all the eigenvectors constructed

one by one as in finite dimensional case. Prove that A|V ⊥ = 0.
Exercise 8: Derive all the properties formulated in the Addendum. Hint: Let there

exist infinite number of (mutually orthogonal) unit eigenvectors en of A with eigenvalues
λn with absolute values greater than ϵ. WLOG (compactness) Aen converges. But

||Aen − Aem||2 = ||λnen − λmem||2 = |λm|2 + |λn|2 ≥ 2ϵ2

which contradicts convergence.

8.1 The same via resolvent and analyticity

Let λ ̸= 0; λ ∈ R. A - s. a., compact.
Then

1)Ker (A+ λI) is finite-dimensional.

(Let {xn} be infinite orthonormal sequence from Ker (A+ λI).

||Axm − Axn|| = |λ| ||xn − xm|| =
√
2|λ|

So {Axn} contains no converging subsequence.)
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2)
(A+ λI) : (Ker (A+ λI))⊥ → (Ker (A+ λI))⊥

is a (bounded) bijection.

1)x ∈ (Ker (A+ λI))⊥ ⇒ (A+ λI)x ∈ (Ker (A+ λI))⊥

Let y ∈ Ker (A+ λI).

((A+ λI)x, y) = (x, (A+ λI)y)) = (x, 0) = 0

(in fact, for any x.
Injectivity: L ∩ L⊥ = {0}.
2)(Exercise:

H = Im (B)⊕KerB∗ (8.4) range

for any bounded (or even densely defined - the notion of the adjoint for unbounded
operators will be introduced later) B)

Comment: in the future Im = Image = R = Range.
Im(A+ λI) - closed.
Let xn{Ker} (A + λI)⊥, (A+ λI)xn → y. One can assume that

||xn|| ≤ C

. Indeed, let xn → infty. ωn := xn/||xn||

(A+ λ)ωn − y/||xn|| → 0

and, therefore,
(A+ λ)ωn → 0

WLOG (compactness) Aωn → Ω0. Thus, ωn → Ω0/λ and Thus,

(A+ λ)ω0 = 0

But ||ω0|| = 1 and
ωo ∈ Ker (A+ λI)⊥,

which gives contradiction.
Now WLOG Axn → z and z + λxn − y → 0. Thus, xn → (y − z)/λ = x0 and

(A+ λ)x0 = y .

Comment: A - compact; I + A - Fredholm. The proof is essentially the same.

Definition 14. R(z) = (A− zI)−1 - resolvent
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resolvent Theorem 4. Let A be self-adjoint. Then
1) R(z) is defined for ℑz ̸= 0.
2)

||R(z)|| ≤ 1/|ℑz|

3)R(z)∗ = R(z̄);

R(z)−R(w) = R(z)R(w)(z − w) = R(w)R(z)(z − w) (8.5) resid

Will be proved for unbounded operators later. The proof for bounded operators is
the same - find it now as an exercise.

Consider the resolvent of a compact self-adjoint operator A. Let λ ∈ C; λ ̸= 0. Let
E : H → Ker (A− λI) be the orthogonal projection (always finite dimensional).

KEY FACT:

R(z) =
E

λ− z
+R1(z) (8.6) compres

in a vicinity of λ with analytic R1(z).
Proof. A− zI respects Ker(A− λI)⊕ (Ker(A− λI))⊥ = N ⊕ F (easy exercise).

For u ∈ N :
(A− zI)u = (A− λ+ (λ− z))u = (λ− z)u

So on N one has

(A− zI)−1 =
1

λ− z
I .

On F : Neumann series. A− λI - invertible, bounded (on F - see above).

A− zI = A− λI − (z − λ)I = P − S

(P − S)−1 = ((I − SP−1)P )−1 = P−1(I +
∑
j>0

(SP−1)j)

(A− zI)−1 = (A− λI)−1(I +
∑
j>0

(z − λ)j(A− λI)−j) =

∑
j≥0

(A− λI)−j−1(z − λ)j .

Therefore, on H one has (
compres
8.6).

Thus, non-zero eigenvalues of A are isolated (and, in particular, there are at most
countable number {λk} of them).

Let Ek be corresponding orthogonal projections (on Ker (A−λkI)). Then EkEj = 0
if k ̸= j and E2

k = Ek.
(Exercise: straightforward and elementary (eigenvectors corresponding to different

eigenvalues of a s. a. operator are orthogonal); or use resolvent identity (
resid
8.5) and (

compres
8.6)

- more elegant.)
Non-zero eigenvalues: λ1, . . . ; λ0 := 0 For any u ∈ H the sum

Eu =
∑
j≥1

Eju
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is well-defined (Bessel inequality: ||
∑

||Eju||2 ≤ ||u||2); E2 = E; E∗ = E; E- projector.

E0 := I − E

Claim.
For any u ∈ H and for any z ∈ C \ R

R(z)u = (A− zI)−1u =
∞∑
j=0

(λj − z)−1Eju (8.7) maincompres

ATTENTION: the following proof illustrates the crucial idea of this course:
complex analysis applied to operator theory. Analytical properties of the re-
solvent are of primary importance.

Remark: the r. h. s. is well-defined:

|λj − z| ≥ |ℑz|

||r.h.s.|| ≤ ||u||/ℑz .

Consider

F (z) = (R(z)u, v)−
∞∑
0

((λj − z)−1Eju, v)

One has
1) F (z) is analytic in C \ {0}.
(explain! - easy)
2) |F (z)| ≤ 2||u|| ||v||/ℑz
(explain! - easy)
3)F (z) = O(|z|−2) as z → ∞.
(Explain! Hints:
a)Neumann: − 1

z−A = − 1
I−A/z

1
z
= −1

z
(I + A/z + . . . )

b)
∑∞

0 (Eju, v) = (u, v) by definition of E0. )

Lemma 14. 1, 2, and 3 imply F = 0 identically.

Proof. All the Laurent coefficients∫
|z|=R

F (z)zk dz

are equal to 0.
1)k ≤ 0 - send R → ∞.
2)Positive k. Induction k − 2 → k. Genial (from Hoermander) trick:∫

|z|=R
F (z)zk dz = (induction) =

∫
|z|=R

F (z)zk−2(z2 −R2)dz =

(z = Rζ)∫
|ζ|=1

F (Rζ)Rk−2ζk−2R2(ζ2 − 1)Rdζ
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|F (Rζ)| ≤ 2||u|| ||v||
ℑ(Rζ)

and ∣∣∣∣∫
|z|=R

F (z)zk dz

∣∣∣∣ ≤ Rk2||u|| ||v||
∫
|ζ|=1

|ζ2 − 1|(ℑζ)−1|dζ → 0

as R → 0.
Recall that we have defined

E0 = I −
∞∑
j=1

Ej .

Now we are able to show that AE0 = 0 i. e. that E0 consists of eigenvectors correspond-
ing to λ0 = 0.

From (
maincompres
8.7)

u = (A− zI)−1

∞∑
0

(λj − z)Eju =

(A− zI)
E0u

(−z)
+

∞∑
1

Eju =

1

(−z)
AE0u+ E0u+

∞∑
1

Eju =

−1

z
AE0u+ u

Thus, AE0u = 0 for any u and

H =
∞⊕
j=0

Vj ,

with A|Vj
= λjI.

9 Appendix 2: Zorn Lemma

This is written to give a technical background for the extension of the Spectral Theorem
to the case of non-separable Hilbert spaces.

9.1 Weak Zorn: formulation

First Weak ZORN (WZ):
A - a partially ordered set (=poset).
Z - a chain (= a totally ordered subset) in A.
m0 = supAZ or supZ - least upper bound (in A) that is
0) m0 ∈ A
1)m0 is an upper bound : ∀z ∈ Z z ≤ m0

2)If m1 is another upper bound then m0 ≤ m1.
WZ: A is a poset such that any chain Z ⊂ A has the least upper bound. Then A

has a maximal element (i. e. an element a0 such that a ≥ a0 implies a = a0).
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9.2 Reduction of WZ to Bourbaki lemma

Let WZ is wrong then any element a of A is not maximal, i. e. the set Ua = {x ∈ A :
x > a} is not empty.

Axiom of choice: one can choose an element in each Ua.
Thus, there is a function f : A→ A such that f(a) > a for all a ∈ A.
Existence of such a function contradicts to the following Lemma.
Bourbaki lemma: Let a poset A satisfy conditions of WZ. Consider f : A → A

such that f(a) ≥ a for all a ∈ A. Then there exists a0 such that

f(a0) = a0 .

9.3 Proof of Bourbaki Lemma

Idea: suppose for a while that A satisfies the conditions of WZ and is totally ordered
itself. Then A has the least upper bound a0. Thus,

1) f(a0) ≥ a0 (property of f)
2)f(a0) ≤ a0 (property of an upper bound)
and, therefore, f(a0) = a0.
So, one has to find a non-empty subset of A with all the properties of A (i. e.

satisfying WZ conditions and conditions for f) and which is totally ordered.
First, formalize ”a non-empty subset of A with all the properties of A (i. e. satisfying

WZ conditions and conditions for f)”.
Choose an element a ∈ A. A subset B of A is admissible if
1)a ∈ B
2)Any chain Z ⊂ B has supAZ ∈ B.
3)f(B) ⊂ B.
In particular, A itself is admissible.
Take the intersection M of all admissible subsets of A.
It is non-empty (contains a!) admissible (trivial) and totally ordered (the hardest

and the central part of the proof, all the rest is trivial) and this immediately gives
Bourbaki and, therefore, WZ.

9.3.1 M is totally ordered

Let us throw off all the c ∈ A such that c < a and all the c that are not comparable
with a.

A := A ∩ {b ∈ A : b ≥ A}

All remains the same. If the statement is proved for new A then it is proved for old A.
But now we will be able to find at least one extreme point (the a itself) in M in the
sense of the definition below.

Definition 1: c ∈M is an extreme point of M if

x ∈M ;x < c⇒ f(x) ≤ c

Remark. a is an extreme point of M . (There are no x: x < a.)
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Plan: we are going to prove that all the points of M are extreme and there are no
points ofM strictly between c and f(c) if c is extreme. This will imply thatM is totally
ordered.

Proposition 1. c — extreme, Mc = {before c or after f(c)} =:

Mc := {x ∈M : x ≤ c or x ≥ f(c)}

Then Mc =M (or there is nothing strictly between c and f(c) in M)
We will prove that Mc is non-empty admissible. This implies Mc = M (since M is

the intersection of all admissible sets).
Non-empty: a ∈ Mc! (a is comparable with all others and is smaller or equal any

other element)
f(Mc) ⊂Mc: trivial (let m ∈Mc. Three cases m < c, m = c, m ≥ f(c) – in all three

f(m) ∈Mc. (Property of f (f(x) ≥ x).
Let T be totally ordered subset of Mc. Let b be its least upper bound in M
Case 1: T completely from the left of c. Then c is an upper bound and the least

upper bound b is less or equal than c, so b in Mc.
Case 2: There are elements of T from the right of f(c). Then f(c) ≤ b and again

b ∈Mc.
Proposition 2. All the elements of M are extreme.
The same trick. Let E be the set of all extreme points of M . Then E is non-empty

(contains a!) and again admissible (therefore, coincides with M which is the smallest
admissible). Why admissible?

1) Let e ∈ E. Why f(e) again extreme? Let x < f(e) (x from M , of course). We
must show that f(x) ≤ f(e). But Me = M (see Prop. 1) So either x < e or x = e
or x ≥ f(e). Last case is impossible. For other two cases we have f(x) ≤ f(e) from
Property of f : If x < e then f(x) ≤ e (e- extreme) and e ≤ f(e) (Property of f). So
f(x) ≤ f(e).

If x = e then f(x) = f(e) ≤ f(e).
So f(E) ⊂ E.
2)T ⊂ E – totally ordered. Then supMT ∈ E. Why?
Let b = supMT .
Suppose x ∈M and x < b. (We have to prove f(x) ≤ b and, therefore, b - extreme)
Then one can find t ∈ T (and, therefore, extreme) such that

x ≤ t .

Why?

M =Mt = {m : m ≤ t or m ≥ f(t)}

If for any t ∈ T t is not ≥ x then for all t from T f(t) is ≤ x. Then x is an upper
bound for T and, therefore, x ≥ b (contradiction).

Cases:
1)x < t. Then f(x) ≤ t (since t – extreme). And f(x) ≤ t ≤ b.
2)x = t. Then x < b But Mx =Mt =M . Thus, b ≥ f(x).
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9.3.2 M – totally ordered

Let x, y ∈ M . Then x is extreme point of M (all the points of M are extreme). Thus,
Mx =M and either y ≤ x or y ≥ f(x). But f(x) ≥ x. So, in the second case y ≥ x.

WZ is proved.

9.4 Strong Zorn

We do not require existence of the least upper bound. Simple upper bound suffices.
Zorn: A is a poset such that any chain Z ⊂ A has an upper bound. Then A has a

maximal element (i. e. an element a0 such that a ≥ a0 implies a = a0).
Very simple.
X the set of non-empty totally ordered subsets of A.
X is a poset (”less or equal”= ⊂)
Any chain in X has the least upper bound (union of all the elements of chain).
WZ implies there exists maximal element M in X – i. e. a totally ordered subset of

A which is not contained in a strictly bigger totally ordered subset of A.
Let m0 be the upper bound of M . Then m0 is a maximal element in A.
Suppose it is not maximal. Then there exists z ∈ A such that z > m0.
Then M ∪ {z} is totally ordered and strictly bigger than M . Contradiction.

9.5 Applications

9.5.1 Hamel basis

V - vector space over k; H = {vα}α∈A - Hamel basis if
1) Any vector from V is a finite linear combination with coefficients from k of

elements from H.
2) Any finite subset of H is linear independent over k.
Always exists.
Consider set X of subsets of V with property 2). Partial order: inclusion. Every

chain has upper bound (Union). Zorn implies existence of the maximal elementM . That
is Hamel basis (if a vector from V is not a finite linear combination of the elements of
M then it can be added to M producing an element of X strictly bigger than M).

Examples: 1) R over Q.

f(x+ y) = f(x)f(y)

Easy: {vα}α∈A Hamel basis of R overQ. Let f(vα) be arbitrary real positive numbers.
Then one can define f(x) =

∏
β f(vβ)

qβ where x =
∑

β qβvβ; β runs over finite subset
of A; qβ ∈ Q.

But if f is continuous then from f(mx0/n) = f(x0)
m/n and continuity one gets

f(x) = ax for some a.
2) Hahn-Banach
3) Algebraic closure of a field.
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10 Some basic facts from the course FA-1

10.1 Uniform boundedness principle = UBP

UBP:
Aα : X → Y

X, Y - Banach spaces, Aα - a family of linear bounded operators.

∀x ∈ X ||Aαx|| ≤ C(x) ⇒ ||Aα|| ≤ const < +∞

APPLICATIONS (for separable Hilbert spaces)

1. If a sequence weakly converges then it is bounded.

H - Hilbert space, xn ⇁ x0 ⇒ ||xn|| ≤ C

Proof. ∀x ∈ H the sequence < x, xn > converges and, therefore, is bounded:
| < x, xn >≤ C(x). Thus, UBP implies ||xn|| ≤ C.

2. Hilbert space is weakly complete.

Let {xn}∞n=1 be a sequence from H. Let ∀x ∈ H the sequence < x, xn > converges
(i. e. < x, xn − xm >→ 0 as n,m→ ∞). Then ∃x0 ∈ H: x ⇁ x0.

Proof. l(x) := lim < x, xn >. From convergence we get | < x, xn > | ≤ C(x)
and UBP implies ||xn|| ≤ C. Thus |l(x)| = | lim < x, xn > | ≤ C||x|| and l(·) is a
bounded linear functional, thus (Riesz!) l(x) =< x, x0 > for some x0 ∈ H.

3. Balls in H are weakly compact.

If ||xn|| ≤ C then ∃ subsequence xnk
weakly converging to some x0 with ||x0|| ≤ C.

Proof. V := LinSpan{xn}∞n=1 (=finite linear combinations). H = V̄
⊕

V ⊥ Step
1. ∃xnk

such that ∀x ∈ V < xn, x > converges. Trivial: for choose a subsequence
such that < x1, xnk

> converges, from this subsequence a subsubsequence such
that < x2, xnkl

> converges and so on. Then take diagonal.

Step 2. This subsequence should converge for any x from V̄ :

Let f ∈ V̄ and let h ∈ V and ||h− f || ≤ ϵ.

|| < xnk
− xnl

, f > || ≤ || < xnk
− xnl

, f − h > ||+ || < xnk
− xnl

, h > || ≤ 2Cϵ+ ϵ

for big k and l.

This subsequence converges for any x ∈ H = V̄
⊕

V ⊥ because < xnk
, x >= 0 for

x ∈ V ⊥.

Thus (item 2) xnk
⇁ x0. It remains to show that ||x0|| ≤ C.

Lemma.
xn ⇁ x0 ⇒ lim inf ||xn|| ≥ ||x0||

Proof.
0 ≥< xn − x0, xn − x0 >= ||xn||2 − 2ℜ < xn, x0 > +||x0||2
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the second term tends to −2||x0||2. Pass to lim inf.

The estimate follows from the lemma.

4. Landau theorem. (In the simplest form: one can also prove lp − lq and even
Lp − Lq versions)

Let {ak}∞k=1 be a number sequence and let ∀{xk} ∈ l2 the series
∑

k akxk converges.
Then {ak} ∈ l2.

Proof. Introduce the linear bounded functionals in l2:

LN(x) =
N∑
k=1

akxk

Clearly,

||LN || =

(
N∑
k=1

|ak|2
)1/2

Since
∑
akxk converges |LN(x)| ≤ C(x). Thus, UBP implies

||LN || ≤ C

and, therefore,
∑∞

k=1 |ak|2 ≤ C.

5. Sesquilinear form continuous w. r. t. each argument is continuous.

If ∀x, y B(·, y) and B(x, ·) are bounded then |B(x, y)| ≤ C||x|| ||y||.
Proof. Step 1. (xn, yn) → 0 implies B(xn, yn) → 0. Ln(·) := B(xn, ·).
∀y |Ln(y)| ≤ C(y), Thus (UBP), |Ln(y)| ≤ C||y|| and |B(xn, yn)| ≤ C||yn|| → 0.

Step 2. Let ∃xn, yn : ||xn|| = ||yn|| = 1 and |B(xn, yn)| ≥ n2.

Then x̃n = xn
n||xn|| and ỹn = yn

n||yn|| tend to zero and

|B(x̃n, ỹn)| ≥ 1 ?!

Thus, |B(x, y)| ≤ C||x|| ||y||.

10.2 Compact operators in Hilbert spaces: basic properties

Definition: Bounded to precompact (= with compact closure).

1. Uniform approximation by finite-dimensional operators.

A - compact, ∀ϵ > 0 there exists finite-dimensional B: ||A−B|| ≤ ϵ.

Proof.

Remark. Works only if the target space is Hilbert (there are orthogonal projectors
on the subspaces!!) Enflo’s counterexample for Banach space as a target.
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Let y1, . . . , yN be ϵ-net for A(B(1)). Then ∀x ∈ B(1)

||Ax− yk|| ≤ ϵ

for some k.
V := LinSpan({yk})

Let PV be orthogonal projection PV : H → V .

B := PVA

One has
||PVA− A|| = sup

||x||=1

||PVAx− Ax|| ≤ 2ϵ

since

||PvAx− Ax|| = ||PVAx− yk + yk − Ax|| ≤ ||Pv(Ax− yk)||+ ||Ax− yk||

and ||PV || = 1.

2. Weakly converging to converging.

A- compact, xn ⇁ x0. Then Axn → Ax0.

Proof. B - finite-dimensional ϵ-approximation.

||A(xk − x0)|| ≤ ||(A−B)(xk − x0)||+ ||Bxk −Bx0||

For the first term: ||xk|| ≤ C (see above) and ||(A − B)(xk − x0)|| ≤ Cϵ For the
second term:

B =
N∑
k=1

< ·, gk > fk

and < xk − x0, gk >→ 0.

3. Other standard properties: An compact, ||An − A|| → 0 then A - compact;

A - compact then A∗ - compact

A - compact B - bounded, then AB and BA - compact, etc

Geometric Lemma

dimH = ∞ ⇒ I is not compact
Let x1, . . . , xn, . . . be linearly independent and Ln := LinSpan {x1, . . . , xn}. Then

∀n > 1 ∃yn ∈ Ln:

||yn|| = 1

and
dist (yn, Ln−1) > 1/2
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Proof. For Hilbert space it is obvious. Let Pn be orthogonal projection on Ln.

x∗ := Pn−1xn

yn :=
xn − x∗

||xn − x∗||
Obviously dist(yn, Ln−1) = 1. For Banach a little bit more tricky: Take x∗ ∈ Ln−1 such
that ||xn − x∗|| < 2α, where α = dist(xn, Ln−1).

yn :=
xn − x∗

||xn − x∗||

∀z ∈ Ln−1

||yn − z|| = 1

||xn − x∗||
||xn − (x∗ + ||xn − x∗||z)|| ≥ 1

2α
α = 1/2

11 Vishik-Lax-Milgram Theorem

a) Continuous sesquilinear form B generates bounded operator A.
V - a Hilbert space, B( · , · ) : V × V → C - sesquilinear, continuous.
Then necessarily: |B(x, y)| ≤ C||x|| ||y||
Riesz ⇒ B(x, · ) =< Ax, · >

| < Ax, y > | = |B(x, y)| ≤ C||x|| ||y||

y := Ax

||Ax||2 =< Ax,Ax >≤ C||x|| ||Ax||

and
||Ax|| ≤ C||x||

i. e. A : V → V is bounded.
b) If this continuous sesquilinear form B is V -elliptic (= ”positively” defi-

nite; in general, it is complex valued, hence ””) then A : V → V - isomorphism
(and, in particular, surjective).

VLM Theorem: |B(x, x)| ≥ α||x||2; α > 0 ⇒ A : V → V - isomorphism (and
A−1 is bounded).

Proof.
A injective: ||Ax|| ||x|| ≥ | < Ax, x > | = |B(x, x))| ≥ α||x||2. Thus,

||Ax|| ≥ α||x|| (11.1) inverse

A surjective:
R(A) - dense. f⊥R(A), f ̸= 0 ⇒ ∀x one has 0 =< Ax, f >= B(x, f). Take x = f ?!
(
inverse
11.1) implies that R(A) is closed. Thus R(A) = V and ||A−1|| ≤ 1

α
.
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Applications: Example 1

c) Existence of a weak solution to Neumann problem.
(Follows from surjectivity of A from VLM Theorem){

(∆− λ)u = f(∈ L2(K)) in K

∂nu = 0 on ∂K
(11.2) Neumann

What is a weak (= generalized) solution?
1)Integration by parts
Gauss theorem:

Ω ⊂ Rl :

∫
Ω

div E⃗ dV =

∫
∂Ω

< n⃗, E⃗ > dS

∂xk(uv) = div (0, . . . , 0, uv, 0, . . . , 0)

n⃗ = (n1, . . . , nl)

Gauss formula implies: ∫
Ω

∂xk(uv)dV =

∫
∂Ω

nkuvdS

or ∫
Ω
uxkv dV = −

∫
Ω
uvxk dV +

∫
∂Ω
nkuv dS - formula of integration by parts.

2) Now let u be classical solution of (
Neumann
11.2) and let v ∈ C∞(K). Then∫

K

fv̄dV =

∫
K

∆u v̄dV −λ

∫
K

u v̄ = −
∫
K

∑
uxi v̄xi +

∫
∂K

∑
uxiniv dS−λ

∫
K

uv̄ dS =

=

∫
K

∑
uxi v̄xi dV +

∫
∂K

∂u

∂n
v̄ dS − λ

∫
K

uv̄ dS =

−
∫
K

∑
uxi v̄xi dV − λ

∫
K

uv̄ dV

Definition. u ∈ W 1
2 (K) is a generalized (weak) solution to (

Neumann
11.2) if ∀v ∈ W 1

2 (K)∫
K
fv̄dV = −

∫
K

∑
uxi v̄xi dV − λ

∫
K
uv̄ dV

3) Introduce B(·, ·) : W 1
2 (K)×W 1

2 (K) → C:

B(u, v) = −
∫
K

∑
uxi v̄xi dV − λ

∫
K

uv̄ dV

B is a continuous sesquilinear form.

Proposition 32. For λ ∈ C \ R− the form B is W 1
2 (K)-elliptic.

Proof

|B(u, u)|2 =
∣∣∣||∇u||2 + (λ1 + iλ2)||u||2

∣∣∣2 = (||∇u||2 + λ1||u||2)2 + λ22||u||4 =

||∇u||4 + (λ21 + λ22)||u||4 + 2||∇u||2λ1||u||2
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WLOG λ1 < 0 and λ2 ̸= 0. (If not then either obvious (λ1 > 0) or in forbidden zone
(λ1 < 0 and λ2 = 0)

2||∇u||2|λ1| ||u||2 ≤ ϵ2||∇u||4 + λ21
ϵ2
||u||4

and

|B(u, u)|2 ≥ ||∇u||4 + (λ21 + λ22)||u||4 − ϵ2||∇u||4 − λ21
ϵ2
||u||4 =

||∇u||4(1− ϵ2) + ||u||2(λ22 − (
1

ϵ2
− 1)λ21) ≥

α(||u||4 + ||∇u||4) ≥ 1

2
α(||u||2 + ||∇u||2)2

if ϵ < 1 and ϵ is close to 1. (ϵ2 < 1 and 1
ϵ2
− 1 is small).

4) Now CENTRAL POINT:

Proposition 33. If λ ∈ C \ R− then problem (
Neumann
11.2) has a generalized solution from

W 1
2 (K).

Proof Due to VLM B(u, v) = (Au, v) for u, v ∈ W 1
2 (K) and A : W 1

2 (K) → W 1
2 (K)

- isomorphism. Linear functional < f, · >L2(K): W
1
2 (K) → C is continuous !!

(| < f, v > | ≤ ||f ||L2||v||L2 ≤ ||f ||L2||v||W 1
2
)

Riesz ⇒ ∃U ∈ W 1
2 : < f, v >L2= (U, v)W 1

2

A - isomorphism (and, in particular, SURJECTIVE). Thus, ∃u0 ∈ W 1
2 : Au0 = U .

For this u0
B(u0, v) = (Au0, v) = (U, v) =< f, v >L2

or
B(u0, v) =< f, v >

for any v ∈ W 1
2 . Thus, u0 is a weak solution to (

Neumann
11.2).

Remark. One can do the same with f ∈ H−1(K) = (W 1
2 (K))∗

12 Lemma used in the proof of Sears criterion

kid Lemma 15. If Φ ∈ D′(R) and Φ′ = 0 then Φ = C. If Φ′′ = 0 then Φ = Cx+D.

Proof of Lemma
kid
15. Let Φ′ = 0. Choose ϕ0 ∈ D(R) such that

∫
R
ϕ0 ̸= 0. Let

C =
< Φ, ϕ0 >∫

R
ϕ0

For any ϕ ∈ D(R) one has

< Φ− C, ϕ >=< Φ, ϕ > −< Φ, ϕ0 >∫
R
ϕ0

∫
R

ϕ =< Φ, ψ >
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where ψ = ϕ− ϕ0
∫
R ϕ∫

R ϕ0
. One has

∫
R
ψ = 0 and therefore ψ(x) = d

dx

∫ x
−∞ ψ with∫ x

−∞
ψ ∈ D(R) (!!!!!)

Thus, < Φ, ψ >= 0 and Φ = C.
Let Φ′′ = 0 Then Φ′ = C and (Φ− Cx)′ = 0. Thus Φ− Cx = D.

Banach Algebras Approach to the
Spectral Theorem:

Notes from Winter 2023 version of the course

13 Spectral Theorem for bounded self-adjoint oper-

ators

13.1 Banach algebra generated by A in BH.

Let A ∈ BH, A = A∗. Consider A – the (closed) commutative Banach algebra (over
R!!!) generated by A in BH.

Spectral Theorem

A = C (Sp (A))

Let αI ≤ A ≤ βI.
(Reminder: A,B - s. a., A ≥ B iff A−B ≥ 0 i. e. ∀x < (A−B)x, x >≥ 0.)
Define the map

R[x] ∋ p(x) 7→ p(A) ∈ A

Lemma 16. If p(x) ≥ 0 on [α, β] then p(A) ≥ 0.

Proof

Lemma 17. Let A s. a., A ≥ 0. Then there exists
√
A ∈ BH, s. a., positive and

commuting with A.

Usually, this Lemma is proved via the Spectral Theorem, but an independent proof is
also possible:

√
A can be constructed via iterations. We skip this (or postpone).
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Lemma 18. Let A1 and A2 are s. a., positive, commuting. Then A1A2 is also s. a.
and positive.

Proof.

< A1A2x, x >=< A1

√
A2

√
A2x, x >=<

√
A2A1

√
A2x, x >=< A1

√
A2x,

√
A2x >≥ 0

Now

p(x) = C
∏
i

(x− αi)
∏
j

(βj − x)
∏
k

(x− γk)
2
∏
l

(
(x− δl)

2 + ϵ2l
)

where C > 0, αi are the real roots from the left of α, βj are the real roots from the right
of β, γk are the roots from (α, β) (of even multiplicity!!); the last product corresponds to
pairs of mutually conjugate complex roots. Clearly, p(A) ≥ 0 by the preceeding Lamma.

Corollary.
||p(A)|| ≤ sup

x∈[α,β]
|p(x)| . (13.1) ineq

Proof. Let S = supx∈[α,β] |p(x)|. Consider

q+(x) = S − p(x) and q−(x) = S + p(x)

Both polynomials are positive on [α, β], therefore, q+(A ≥ 0 and q+(A) ≥ 0. This
gives

∀x − S||x||2 ≤< p(A)x, x >≤ S||x||2

or
sup
||x||=1

| < p(A)x, x > | ≤ S .

But for a bounded s. a. operator B

||B|| = sup
||x||=1

| < Bx, x > |

(skipped, see FA 1, postponed if unknown). Thus, ||p(A)|| ≤ supx∈[α,β] |p(x)| as stated.
Thus, the map

p(x) 7→ p(A)

extends to a (continuous) morphism of Banach algebras

i : C[α, β] → A

(via Weierstrass Theorem).
Consider I = Ker i — a closed ideal in C[a, b].
Define (notation will be justified later, it is in fact the spectrum of A)

Sp (A) := Z(I) = {x ∈ [a, b] : ∀f ∈ I f(x) = 0}

Lemma 19.
I = {f ∈ C[a, b] : f

∣∣∣
Z(I)

= 0}
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That is a general fact. Let K be a Hausdorf compact, and let I be a closed ideal in
C(K). Then I = {f ∈ C(K) : f |Z(I) = 0}.

Reminder: Real version of Stone-Weierstrass: K – Hausdorf compact, A <
C(K), A separates any two points and 1 ∈ A =⇒ A = C(K).

Proof. Z(I) is compact. K/Z(I) is again a (Hausdorf) compact.

C(K/Z(I)) = {f ∈ C(K) : f |Z(I) = const}

The subalgebra c1+ I of C(K/Z(I)) coincides with C(K/Z(I)) due to the real version
of S.-W., so, I coincides with {f ∈ C(K) : f |Z(I) = 0}.

Now define the map
C(SpA) ∋ f 7→ f̃(A) ∈ A

where f̃ is a continuous extension of f to [α, β] with the same uniform norm. Clearly,
the f̃(A) is independent of the choice of the extension:

g|Sp (A) = 0 =⇒ g(A) = 0

Thus we have a morphism
j : C(Sp (A)) → A

Theorem 5. � For f ∈ C(Sp(A)) one has

f ≥ 0 ⇔ j(f) = f(A) ≥ 0

� j : C(Sp(A)) → A is an isomorphism of Banach algebras.

(An alternative form of the SPECTRAL THEO-
REM)

Proof. 1) Let f(A) ≥ 0. We have to prove that f ≥ 0 on Sp (A).
Let c ∈ Sp(A), f(c) < 0. Let ξ be a positive cut-off function with support near c.

Then ξf is negative everywhere and −ξ(A)f(A) ≥ 0. But f(A) is positive and ξ(A)
is positive, so ξ(A)f(A) ≥ 0. Thus, f(A)ξ(A) = 0 and fξ ∈ Ker i and, therefore,
fξ|Sp(A) = 0 which gives a contradiction.

2)b := ||f(A)||, then
bI ± f(A) ≥ 0

and, therefore,
b± f(t) ≥ 0

on Sp(A) and
sup
Sp(A)

|f | ≤ b = ||f(A)||

□
Finally, we identify Sp (A) with the spectrum of A.
Temporarily denote the spectrum of A by σ(A). 1)σ(A) ⊂ Sp(A) or Sp(A)c ⊂ σ(A)c.
Let ξ ∈ R does not belong to Sp(A). then t 7→ ξ is invertible on Sp(A) and A− ξI

is also invertible.
2)Sp(A) ⊂ σ(A).
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Let ξ ∈ Sp (A). Let g be a positive function equal to N in 1/n-vicinity of ξ and
g(t) = 1/|t− ξ| outside this vicinity.

Assume that A− ξI is invertible. Let B = (A− ξI)−1.

B(A− ξI) = (A− ξI)B) = I

Since |(t− ξ)g(t)| ≤ 1, one has

||(A− ξI)g(A)|| ≤ 1

and
||g(A)|| = ||B(A− ξI)g(A)|| ≤ ||B||

But ||g(a)|| = N , which gives a contradiction.

Exercise. Show that the C∗-algebra generated by I and A in BH is isomorphic to
CC(Sp(A)).

13.2 On projection operators.

G - closed subspace H, H = G⊕F , h = g+ f , h 7→ g is the orthogonal projection PGh.

Lemma 20. Let P : H → H be a linear operator. Then P 2 = P & P ∗ = P iff P = PG
for some closed G < H.

Proof. G := {h ∈ H : Ph = h}.
Clearly, ∀h ∈ H PGh ∈ G,Ph ∈ G. Thus, one has to prove that ((PG−P )h, g) = 0

for any g ∈ G. That immediately follows from P = P ∗ and P ∗
G = PG.

Properties

�

||P || = 1, (Px, x) ≥ 0 ,

trivial

� P ̸= 0 =⇒ σ(P ) = {0, 1}.
Directly: (P − λI)−1 = 1

1−λP − 1
λ
(I − P ) (can be also obtained via Neumann

series).

� Let L,M < H. Then PLPM = PMPL = 0 iff L ⊥M .

� PL + PM is a projector iff L ⊥M .

� PMPL = PLPM = PM iff M < L.

� PL − PM is a projector iff M < L.

90



� PMPL is a projector iff PMPL = PLPM (and in this case PLPM = PL∩M).

Proof. ⇒:

P1P2 = (P1P2)
∗ = P ∗

2P
∗
1 = P2P1;

⇐:

(P1P2)
2 = P1P2P1P2 = P 2

1P
2
2 = P1P2; (P1P2)

∗ = P ∗
2P

∗
1 = P2P1 = P1P2.

P1P2h ∈ H1 =:M , P2P1 ∈ H2 =: L and P1P2 : H →M ∩ L.

13.3 Extension of the map C[α, β] 7→ A ⊂ BH.

Preliminary Remark. One can derive the usual form of the Spectral Theorem (i. e.
unitary equivalence to the operator of multiplication) from its Alternative form stated
above. This will be done a little bit later. After that the map C[α, β] 7→ A ⊂ BH
and its extension (say, to characteristic functions of a measurable set) become obvious
(multiplication by a bounded measurable function is a bounded operator in L2).

Lemma 21. Let An - s. a., An ≥ αI, An ≥ An+1. Then ∀v ∈ H ∃ limAnv =: Av and
A is bounded and s. a.

Proof. Clearly (Anv, v) converges for any v ∈ H. Polarization identity implies
(Anv, w) converges for all v, w ∈ H. Define an antilinear functional

λv(w) = lim(Anv, w)

||A1||2 = sup((A1x, x) ≥ sup((Anx, x) = ||An||

Thus, ||An|| ≤ C and, therefore,

|λv(w)| ≤ const||w||

and there is an operator A such that

(Av,w) = lim(Anv, w)

It is s. a. since (Anv, w) = (v, Anw) and bounded because the adjoint is closed.
Let us prove that s− limAn = A. One has

||Anv − Av||2 = ||
√
An − A

√
An − Av||2 ≤

≤ ||
√
An − A||2(

√
An − Av,

√
An − Av) = ||An − A||((An − A)v, v)

≤ (C + ||A||)((An − A)v, v) → 0

(the relation ||B||2 = ||BB∗|| and the self-adjointness of
√
An − A was used).

Remark. This proof, taken from Appendix to Lang’s “SL2(R)” is less tricky than the
one from Riesz–Sz-Nagy book. However the final step was missed by Lang (he proved
only weak convergence) and the trick with square roots is taken from Murphy book on
C∗-algebras (where the above Lemma is called ”Vigier Theorem”).
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Lemma 22. Let f ≥ −C on Sp(A) and let fn are continuous on Sp(A), fn ≥ fn+1 on
Sp(A) and fn → f on Sp(A) point-wise.

Then lim f(An) (given by the previous lemma) is independent of the choice of the
sequence {fn}.

Proof. Let gn, hn be such sequences. Fix k and ϵ. Then gn ≤ hk + ϵ for sufficiently
big n. Thus gn(A) ≤ hk(A) + ϵI and

lim gn(A) ≤ hk(A) + ϵI

and, therefore,
lim gn(A) ≤ hk(A)

send k → ∞. Change g and h.
So, the map f 7→ f(A) can be extended to functions that are bounded from below

and can be represented as point-wise limits of monotonously decreasing sequences of
continuous functions.

In particular, 1x≤λ are such. Let E(λ) = 1x≤λ(A).
Since 1x≤λ(A)1x≤λ(A) = 1x≤λ(A), E(λ)

2 = E(λ) and E(λ) is a projection in H.

13.4 Resolution of identity (aka spectral family of projections)

Clearly, µ ≤ λ =⇒ E(µ) ≤ E(λ). Let αI ≤ A ≤ βI, then E(λ) = 0 for λ ≤ α and
E(λ) = I for λ ≥ β.

Lemma 23. (Strong right continuity)

s− lim
ϵ→0+

E(c+ ϵ) = E(c)

Proof. Clearly, E(c+ ϵ)− E(c) is a projection, therefore,

||((E(c+ ϵ)− E(c))v||2 = ((E(c+ ϵ)− E(c))v, v) .

So one has to prove that
(E(c+ ϵ)v, v) → (E(c)v, v)

as ϵ→ 0+. Let hϵ continuously extends{
1, x ≤ c

0, x ≥ c+ ϵ

to R (say, via linear interpolation) and hδ similarly extends{
1, x ≤ c+ ϵ

0, x ≥ c+ ϵ+ δ

Clearly, hδ → hϵ uniformly as δ → 0. Therefore, hδ(A) → hϵ(A) in the operator
norm as δ → 0. (Continuous functional calculus for A). One has

1x≤c ≤ 1x≤c+ϵ ≤ hδ
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and
hδ ≤ hϵ + ϵ

for sufficiently small δ. So,
1x≤c ≤ 1x≤c+ϵ ≤ hϵ + ϵ

and, since (hϵ(A)v, v) → (1x≤c(A)v, v) as ϵ→ 0+, one gets the statement of the Lemma.

Spectral inequality

Lemma 24. Let b ≤ c. Then

b(E(c)− E(b)) ≤ A(E(c)− E(b)) ≤ c(E(c)− E(b)) (13.2) Spineq

Proof. The inequality

b(E(c)− E(b)) ≤ A(E(c)− E(b))

follows from the inequality

bI
∣∣∣
kerE(b)

≤ A
∣∣∣
kerE(b)

(13.3) eq1

In fact, let h ∈ H, h = u+ v with u ∈ kerE(b), v ∈ (kerE(b))⊥.
Then (E(c)− E(b))v = 0. Indeed, since E(b)(E(c)− E(b)) = E(b)− E(b) = 0, one

has ∀h ∈ H (E(c)− E(b))h ∈ kerE(b) and

∀g ∈ H ((E(b)− E(c))v, g) = (v, (E(b)− E(c))g) = 0 .

On the other hand, if v ∈ kerE(b) then E(c)v ∈ kerE(b), too.
Similarly, the inequality

A(E(c)− E(b)) ≤ c(E(c)− E(b))

follows from the inequality

A
∣∣∣
E(c)H

≤ cI
∣∣∣
E(c)H

. (13.4) eq2

(since E(c)E(b) = E(b) and, therefore, (E(c)− E(b))H ⊂ E(c)H, this is obvious).
Now consider the product, fb, of two functions:

� x− b

� 1x>b

Clearly,
(A− bI)(I − E(b)) = fb(A) ≥ 0

and, (
eq1
13.3) follows.

Similarly, the product, gc of (x− c) and 1x≤c is negative. Therefore, (A− cI)E(c) is
a negative operator.
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Theorem 6. (Lorch)
∃s− lim

ϵ→0+
(E(c)− E(c− ϵ)) = Qc

and Qc is the projection on {v ∈ H : Av = cv}

Proof. From spectral inequality one gets

(c− ϵ)(E(c)− E(c− ϵ)) ≤ A(E(c)− E(c− ϵ)) ≤ c(E(c(−E(c− ϵ))

or
−ϵ(E(c)− E(c− ϵ)) ≤ (A− cI)(E(c)− E(c− ϵ)) ≤ 0

This gives (use ||B|| = sup |(Bx, x)|)

||(A− cI)(E(c)− E(c− ϵ)|| ≤ ϵ (13.5) ocenka

On the other hand Vigier theorem guarantees that

∀v ∈ H ∃ lim
ϵ→0+

(E(c)− E(c− ϵ))v =: w

(more elementary (no Vigier, only basic definitions - exercise):

Lemma 25. {Pi}∞i=1 - projections, Pi ≥ Pi+1. Then ∃s − limPi = Q and Q is a
projection.

)
and (

ocenka
13.5) implies

((A− cI)w = 0

or Aw = λw.
Thus, the projectiion Qc sends H to ker (A− cI).
It remains to show that

Qc

∣∣∣
ker,(A−cI)

= Id (13.6) triv

One can consider all the operators involved (A, I, E(b), E(c)) as elements ofB(ker (A−
cI)). Then A = cI. Since Sp(A) = {c}, 1x≤c = 1 on Sp(A) and E(c) = I and E(b) = 0
if b < c. Thus, (

triv
13.6) holds true.

13.5 Integral representation fo A

αI ≤ A ≤ βI

µ0 < α < µ1 < µ2 < · · · < µn−1 < β < µn

sup
k
(µk+1 − µk) ≤ ϵ

Spectral inequality gives

µk−1(E(µk)− E(µk−1)) ≤ A(E(µk)− E(µk−1)) ≤ µk(E(µk)− E(µk−1))
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Summing up one gets

n∑
k=1

µk−1(E(µk)− E(µk−1)) ≤ A ≤
n∑
k=1

µk(E(µk)− E(µk−1))

and
n∑
k=1

µk(E(µk)− E(µk−1))−
n∑
k=1

µk−1(E(µk)− E(µk−1)) ≤ ϵI

Thus,

||A−
n∑
k=1

λk(E(µk)− E(µk−1))|| ≤ ϵ

if µk ≤ λk ≤ µk and

A =

∫ +∞

−∞
λdE(λ) =

∫ β

α−
λdE(λ)

(as projection Stiltjes integral)

13.6 Equivalence with multiplication form of the S. T.

First let us pass to complex-valued functions. Extend i to a ∗-morphism

CC[α, β] → {
<∞∑

akAk, ak ∈ C} =: AC < BH

in an obvious way. One has

||i(f +
√
−1g)|| ≤ ||i(f)||+ ||i(g)|| ≤ sup

|
f |+ sup |g| ≤ 2 sup |f +

√
−1g|

Let f ∈ H, consider Hf = ACf = {
∑<∞ akAk, ak ∈ C}. In case Af = H the vector

f is called cyclic. In general,
H = ⊕∞

k=1Hfk (13.7) dsum

(exercise - the same me thod as for resolvent way).
Consider the (bounded, positive) functional:

C[α, β] ∈ ϕ 7→ (ϕ(A)f, f) .

By R-M Theorem

(ϕ(A)f, f) =

∫
R
ϕdµf

for some finite measure µ on R (in fact with supp on σ(A)).
In particular,

(Anf, Amf) = (An+mf, f) =

∫
xn+mdµf (x) =< xn, xm >L2(R,dµf )
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So, we get an isometry
U : Hf → L2(R, dµf )

Clearly, action of A is unitary equivalent to multiplication by x. Finally, using (
dsum
13.7),

one constructs the unitary equivalence

U : H → ⊕∞
k=1L2(SpA; dµk)

with UAU−1 acting as Mx.
Let M be the disjoint union ∪kSpA with measure µ whose restriction on k-th com-

ponent is µk. Let Â : M → R be the function defined by Â(p) = x(p) if p is in k-th
component of M .

If f is a bounded measurable (say, Borel) function on Sp(A) then define

f(A) := U−1f(Â)U

Exercise: fj - uniformly bounded (measurable, or, what suffices, continuous). fj
converges pointwise to f . Then

∃s− limfj(A) = f(A) .

Hint: this immediately follows from Lebesgue dominated convergence theorem.
Thus, we arrive at the extended functional calculus as it was constructed above.

13.7 Spectral Theorem for commuting operators

With a very small effort one can prove the generalization of ST for s. a. bounded
A1, . . . , An, such that [Ai, Aj] = 0: there is an unitary equivalence U : H → L2(M,µ)
such that UAkU

−1 are Mfk with some (bounded) measurable real-valued fk. (In fact M
is the product of Sp(Ai).)

13.8 Derivation of the ST for unbounded s. a. operators

Recall that operator B is called normal if BB∗ = B∗B. If B is normal then

B = A1 + iA2

with self-adjoint commuting A1, A2. In fact,

B =
B +B∗

2
+ i

B −B∗

2i

Thus, using the ST for commuting A1, A2, one gets the spectral theorem for bounded
normal operator: it is unitary equivalent to operator of multiplication Mf1+if2 by a
complex-valued function.

Now let A : H → H be s.a, unbounded. According to Lemma 4 §3.1.2 (page 31) of
the Main Course, N := (iI − A)−1 exists and is bounded.

Lemma 26. The operator N is normal.
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Proof. One has

[(iI − A)−1]∗ = [(iI − A)∗]−1 = (−iI − A)−1

and

(iI − A)−1[(iI − A)−1]∗ = (iI − A)−1(−iI − A)−1 = [(−iI − A)(iI − A)]−1 =

[(iI − A)(−iI − A)]−1 = (−iI − A)−1(iI − A)−1 = [(iI − A)−1]∗(iI − A)−1

Therefore, (iI − A)−1 is unitary equivalent to the multiplication operator Mψ in
L2(M,dµ) with some complex-valued ψ. Let ϕ = i − 1

ψ
. Then A is unitary equivalent

to Mϕ. Since A is self-adjoint, ϕ should be a. e. real. □
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