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Green Function and Self-adjoint Laplacians
on Polyhedral Surfaces

Alexey Kokotov and Kelvin Lagota

Abstract. Using Roelcke’s formula for theGreen function, we explicitly construct a basis in the kernel
of the adjoint Laplacian on a compact polyhedral surface X and compute the S-matrix of X at the
zero value of the spectral parameter. We apply these results to study various self-adjoint extensions of
a symmetric Laplacian on a compact polyhedral surface of genus two with a single conical point. It
turns out that the behaviour of the S-matrix at the zero value of the spectral parameter is sensitive to
the geometry of the polyhedron.

1 Introduction

he spectral geometry of aRiemannianmanifold X with singularities ismore involved
than that of smooth manifolds, because it may happen that the symmetric Laplacian
∆ (usually deûned on smooth functions supported in X/{singularities}) is not essen-
tially self-adjoint and in order to consider the spectrum of the Laplacian, one has to
make a choice from (inûnitely) many possible self-adjoint extensions of ∆.

In dimension one, this leads to the rich theory of quantum graphs; the case of Eu-
clidean spacesR2 andR3 with punctures is investigated in great detail in [3] (see also
the references therein);manifolds of higher dimensionwith cone-like singularities are
considered, e.g., in the papers [13, 14, 19, 24] to mention a few. In this paper, we con-
sider the case of compact polyhedral surfaces (closed surfaces glued from Euclidean
triangles). hese are compact Riemann surfaces equippedwith �at conformal metrics
with conical singularities at the vertices of the corresponding polyhedron (it should
be noted that themetric of a polyhedron does not see the edges: interior points of an
edge are ordinary smooth point of the corresponding Riemannian manifold).
A question of general interest here can be formulated as follows: how do the spec-

tral characteristics of the polyhedron depend on the choice of the self-adjoint ex-
tension of the symmetric Laplacian, the choice of conformal polyhedral metric, and
moduli of the underlying Riemann surface? his question was partially addressed
in [10], where the dependence on the choice of the self-adjoint extension of an im-
portant spectral invariant, the ζ-regularized spectral determinant of the Laplacian,
was analysed. It turned out that one canwrite a comparison formula for two determi-
nants of the Laplacian corresponding to diòerent self-adjoint extensions and themain
ingredient of this formula is the so-called S-matrix of the polyhedral surface. he S-
matrix depends on the spectral parameter λ and is deûned through the coeõcients
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Green Function and Self-adjoint Laplacians on Polyhedral Surfaces 1325

in the asymptotical expansions near the conical points of some special solutions (in
classical sense) to the homogeneous Helmholtz equation (∆ − λ)u = 0 on the poly-
hedron. Moreover, the behaviour of S(λ) at the zero value of the spectral parameter
plays especially important role, say, the order of the zero of a certain minor of S(λ)
at λ = 0 is related to the number of zero modes of the corresponding self-adjoint
extension; most of the entries of the matrix S(0) admit explicit expression through
holomorphic invariants of the underlyingRiemann surface (Bergman kernel, Schiòer
projective connection), and in case of a smooth surfacewith punctures (which can be
considered as conical points of angle 2π) entries of S(0) are related to the Robin mass
of the surface, etc.

In this paper, we apply and further develop the results of [10]. In the ûrst part of
the paper, we discuss the general properties of the symmetric Laplacian ∆ on arbi-
trary polyhedral surface. We give an explicit description of the domain of its adjoint
∆∗ and, in particular, explicitly construct a basis of the kernel Ker∆∗. Using the latter
basis,we compute thematrix S(0) expressing its entries through holomorphic invari-
ants of the underlying Riemann surface. Our main technical tool here is the Roelcke
formula for the Green function of a closed surface, which we brie�y discuss in the
very beginning of the paper. In the second part of the paper, we apply the results of
the ûrst part to the simplest example of a polyhedral surface of (the lowest possible)
genus two with one conical point. We study three concrete self-adjoint extensions
of the symmetric Laplacian on this surface: the Friedrichs extension, the so-called
holomorphic extension, and themaximal singular extension. Using the results of [10]
and the explicit formulas for S(0), we write down the precise (with all the auxiliary
constants computed) comparison formulas relating the ζ-regularized determinants
of these three extensions. It turns out that properties of the S-matrix depend on geo-
metric properties of the polyhedral surface. We show that the dimension of the kernel
of the holomorphic extension (related to the order of the zero of a certain minor of
S(λ)) depends on the class of linear equivalence of the divisor (2P), where P is the
vertex of the polyhedron (this eòectwas previously found in [11],where the polyhedra
of genus g with 2g − 2 vertices were considered) and that the dimension of the kernel
of the maximal singular extension can be higher than usual if the surface has a very
large group of symmetry.

2 Green Function and Kernel of the Adjoint Laplacian for Compact
Polyhedral Surfaces

2.1 Roelcke’s Formula for the Green Function

Let X be a compact Riemann surface and let ρ be a conformal metric on X;we assume
that ρ is either smooth or �at with conical singularities. Let ∆ρ be the correspond-
ing self-adoint Laplace operator (in the case of a conical metric we deûne ∆ρ as the
Friedrichs extension of the symmetric Laplace operator with domain consisting of
smooth functions vanishing near the conical points; the functions from the domain
of the Friedrichs extension are known to be bounded near the conical points) and let
G(x , y) be the corresponding Green function, i.e., the constant term in the expansion
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of the resolvent kernel, R(x , y; λ), of the operator ∆ρ at λ = 0:

R(x , y; λ) = − 1
Area(X) λ

+G(x , y) + O(λ).

he Green function is real-valued and satisûes
(1) G(x , y) = G(y, x).
(2) ∆ρ

xG(x , y) = ∆ρ

yG(x , y) = − 1
Area(X ,ρ) for x ≠ y.

(3) G(x , y) = 1
2π log ∣x − y∣ + O(1) as x → y.

(4) In the case of a conical metric, the Green function G( ⋅ , y) is bounded near
all the conical points (unless y is a conical point itself and the ûrst argument
approaches to y).

(5) For any x ∈ X, one has

(2.1) ∫
X

G(x , y)dS(y) = 0,

where dS is the volume element of themetric ρ.
In the case of a smoothmetric, the explicit formula (2.3) below for theGreen func-

tion is given in [8, p. 31, f-la (2.19)] and is called Roelcke’s formula (without any refer-
ence). Unfortunately,wewere unable to identify the primary source and it seems that
[8] is the only published text containing this result in its full generality (it should be
noted that the “Green function of a closed orientable surface” from [29, §4.2] is just
the function FP1 ,Pk

from Proposition 2.7 below and has nothing to do with the Green
function discussed here).
Formula (2.3) and its proof are also valid for conical metrics. For the reader’s con-

venience, we decipher the derivation of this formula given in passing in [8].
Choosing a standard basis of a- and b-cycles on X and the corresponding basis

{vα}g

α=1 of the normalized (∮aβ vα = δαβ) holomorphic one-forms, introduce (see,
e.g., [7, p. 4] with diòerent normalization of the basic holomorphic diòerentials) a
meromorphic one-form Ωp−q via

Ωp−q(z) = ∫
q

p

W(z, ⋅ ) − 2πi

g

∑
α ,β=1

(IB)−1
αβvα(z)I∫

q

p

vβ ,

where W is the canonical meromorphic bidiòerential on X. It is straightforward to
check that this one-form is the unique diòerential of the third kind with simple poles
at p and q with residues 1 and −1 and with purely imaginary periods. hus, the real
part of the integral ∫

y

x
Ωp−q iswell deûned (i.e., is independent of the path of the inte-

gration) and gives a harmonic function (with logarithmic singularities) with respect
to all four arguments x , y, p, q. Using the known singularities of the latter function,
one can express it as

(2.2) R∫
y

x

Ωp−q = 2π(G(y, p) −G(y, q) +G(x , q) −G(x , p)) .

Integrating (2.2) over X twice (ûrst with respect to dS(x) and then with respect to
dS(q)),making use of (2.1), and renaming the arguments in the resulting expression,
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one gets an explicit formula for the Green function

(2.3) G(x , y) = 1
2π(Area(X , ρ))2 ∫

X

dS(q)∫
X

dS(p)R∫
x

p

Ωy−q .

2.2 Harmonic Functions with Prescribed Singularities

2.2.1 Domain of the adjoint operator and Gelfand symplectic form

Let P1 , . . . , PM be the conical points of the metric ρ and let β1 , . . . , βM be the corre-
sponding conical angles. Introduce the integers nk , k = 1, . . . ,M via

2πnk < βk ≤ 2π(nk + 1).

In the proof of Proposition 2.4, we will need to consider a conical point with conical
angle 2π. In this case, nk = 0 and all the sums ∑nk

l=1 are equal to 0 by deûnition. Let
X0 = X/{P1 , . . . , PM} and let ∆∗ be the adjoint operator to the standard symmetric
Laplacian ∆ρ with domain C∞0 (X0). Introduce the distinguished local parameter ζk

near Pk : we remind the reader that in this local parameter one has ρ(ζk , ζ k)∣dζk ∣2 =
(bk + 1)2∣ζk ∣2bk ∣dζk ∣2, where 2π(bk + 1) = βk .

In the vicinity of the point Pk , a function u from D(∆∗) has the asymptotics

u = i√
2π

Lk(u) log ∣ζk ∣ +
nk

∑
m=1

1√
4πm

Hk ,m(u) 1
ζm

k

+
nk

∑
m=1

1√
4πm

Ak ,m(u) 1
ζ
m

k

(2.4)

+ i√
2π

ck(u) +
nk

∑
m=1

1√
4πm

hk ,m(u)ζm

k +
nk

∑
m=1

1√
4πm

ak ,m(u)ζ
m

k + χv ,

where χ is a cut-oò C∞-function equal to 1 in a small vicinity of Pk with support in
another small vicinity of Pk , and v is a function from the domain of the closureD∆ρ .
One has the asymptotics v = o(∣ζk ∣nk) as ζk → 0. he notation for the coeõcients
comes from the form of the corresponding term in the asymptotics: growing holo-
morphic (H), growing antiholomorphic (A), (growing) logarithm (L), constant (c),
and decreasing holomorphic and antiholomorphic (h and a). he normalizing factors
( 1
√

4πm
, etc) are introduced to obtain the standard Darboux basis for the symplectic

form in (2.5). We give the proof of (2.4) in the Appendix.
Let Ω be the symplectic form on the factor spaceD(∆∗)/D(∆ρ):

Ω([u], [v]) ∶= ⟨∆∗u, v⟩ − ⟨u, ∆∗v⟩,

where ⟨u, v⟩ = ∫X uvdS is the usual hermitian product. It is straightforward to show
that

(2.5) Ω([u], [v]) =
M

∑
k=1

Xk(u)(
0 −I2nk+1

I2nk+1 0 )Xk(v)t ,
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where

Xk(u) = (Lk(u),Hk ,1(u), . . . ,Hk ,nk
(u),Ak ,1(u), . . . ,

Ak ,nk
(u), ck(u), hk ,1(u), . . . , hk ,nk

(u),

ak ,1(u), . . . , ak ,nk
(u)) .

2.3 Special Growing Solutions and the S-matrix of the Polyhedral Surface X

We remind the reader that the Friedrichs self-adjoint extension ∆F of the operator ∆ρ

with domain C∞0 (X0) has the domain

D(∆F) = {u ∈D(∆∗) ∶ ∀k = 1, . . . ,M Lk(u) = Hk ,1(u) = ⋅ ⋅ ⋅ = Hk ,nk

= Ak ,1 = ⋅ ⋅ ⋅ = Ak ,nk
= 0} ;

in particular, all the functions from the domain of the Friedrichs extension are
bounded near the conical points. he kernel of ∆F is one-dimensional and consists
of constant functions. Let λ not belong to the spectrum of ∆F . We deûne the unique
special growing solutions,
(2.6) G1/ζ l

k

( ⋅ ; λ), G
1/ζ

l

k

( ⋅ ; λ), Glog ∣ζk ∣( ⋅ ; λ),

k = 1, . . . , n, l = 1, . . . , nk of the homogeneous equation
(2.7) ∆∗u − λu = 0
via their asymptotic expansions at the conical points. he unique growing term in
these asymptotical expansions is that shown as the subscript of the special solution.
For instance, one deûnes G1/ζ s

k
via

G1/ζ s
k
(ζk ; λ) =

1
ζ s
k

+ O(1)

as ζk → 0 and
G1/ζ s

k
(x; λ) = O(1)

as x → Pl with l ≠ k.

Deûnition 2.1 (see [10]) he constant terms and the coeõcients near the decreasing
(= positive) powers ζ s

l
and ζ

s

l ; s = 1, . . . , n l ; l = 1, . . . ,M in the asymptotic expansions
of the special growing solutions form the so-called S-matrix, S(λ), of the polyhedral
surface X.

Say the entry S1/ζ r
k
,ζ

s

l (λ) of the S-matrix is given by the coeõcient near ζ
s

l in the
asymptotical expansion of the special growing solution G1/ζ r

k
( ⋅ ; λ) near the conical

point Pl ; similarly, the entry S log ∣ζk ∣,1 l (λ) is the constant term in the asymptotic ex-
pansion of the special growing solution Glog ∣ζk ∣( ⋅ ; λ) near Pl .

he following proposition is a slightly improved version of [12, Proposition 7].

Proposition 2.2 All the entries of the matrix S(λ) except S log ∣ζk ∣,1 l (λ) admit holo-

morphic continuation to λ = 0; the entries S log ∣ζk ∣,1 l (λ) have a simple pole at λ = 0.
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Proof We startwith reminding the reader of the construction of the special growing
solutions (2.6). Let F be one of the following functions deûned on the whole X:

χ log ∣ζk ∣, χ
1
ζ l

k

, χ
1

ζ
l

k

,

where χ is a C∞ cut oò function supported in a small vicinity of Pk such that χ = 1 in
some smaller vicinity of Pk . Let ∆F be the Friedrichs Laplacian and let λ not belong
to the spectrum of ∆F . Introduce

f ∶= (∆∗ − λ)F
and deûne g( ⋅ ; λ) as the (unique) solution of the equation

(2.8) (∆F − λ)g = (∆∗ − λ)F
(it should be noticed that the right-hand side of this equation belongs to L2(X , ρ)).
hen

G( ⋅ ; λ) = F( ⋅ ) − g( ⋅ ; λ)
is the special growing solution with principal part F. It follows from the above con-
struction that

g( ⋅ ; λ) = g( ⋅ ; λ) + 1
Area(X)λ ∫X

f ( ⋅ ; λ) − 1
Area(X)λ ∫X

f ( ⋅ ; λ)

= [(∆F − λ)∣1�]
−1((∆∗ − λ)F − 1

Area(X) ∫X

(∆∗ − λ)F)

− 1
Area(X)λ ∫X

f ( ⋅ ; λ).

(2.9)

he ûrst term in (2.9) is holomorphic in a vicinity of the point λ = 0 (a simple eigen-
value of ∆F). he behaviour of the second term at λ = 0 depends on the choice of the
principal part F. In the case F = χ1/ζ l

k
or χ1/ζ

l

k , the second term is again holomorphic
at λ = 0, thanks to the obvious relation

(2.10) ∫
X

f ( ⋅ ; 0) = 0.

If the principal part F is logarithmic (F = χ log ∣ζk ∣), then (2.10) is no longer true and
g( ⋅ ; λ) has a simple pole with residue

− 1
Area(X) ∫X

∆∗F = − 2π
Area(X) .

Summing up, the special growing solution G1/ζ l

k

( ⋅ ; λ) and G
1/ζ

l

k

( ⋅ ; λ) are holomor-
phic with respect to λ at λ = 0, whereas

Glog ∣ζk ∣( ⋅ ; λ) =
2π

Area(X)λ + h( ⋅ ; λ),

where h( ⋅ ; λ) is holomorphic near λ = 0. hus, all the coeõcients in the asymptotic
expansion of G1/ζ l

k

( ⋅ ; λ) and G
1/ζ

l

k

( ⋅ ; λ) are holomorphic at λ = 0. he constant
term in the asymptotics Glog ∣ζ∣( ⋅ ; λ) blows up at λ = 0. All other coeõcients in the
asymptotics Glog ∣ζ∣( ⋅ ; λ) are holomorphic at λ = 0. ∎
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Remark 2.3 he values at λ = 0 of nonsingular entries of the S-matrix depend on
the choice of ametric ρ within a given conformal class through their dependence on
the distinguished local parameters of themetric near the conical points. he opposite
statement in [12, Proposition 7] was made under the implicit assumption that the
conformal factor is equal to one in small vicinities of the conical points.

he values of nonsingular entries of the S-matrix at λ = 0 can be found from the
asymptotics of the (unique) special growing solutions G1/ζ l

k

( ⋅ ; 0), G
1/ζ

l

k

( ⋅ ; 0) of the
equation
(2.11) ∆∗u = 0
subject to the condition

(2.12) ∫
X

udS = 0.

It should be noted that there is no harmonic function on X with a single logarithmic
singularity, so the special growing solutions Glog ∣ζk ∣( ⋅ ; 0) do not exist.

he following proposition is the ûrst new result of this paper. A closely related
statement for the Green functions of elliptic boundary value problems in domains
with conical points at the boundaries can be found in [22].

Proposition 2.4

● he special growing solutions G1/ζ l

k

(y; 0), G
1/ζ

l

k

(y; 0); l = 1, . . . , nk of the equa-

tion (2.11) are related to the coeõcients of the asymptotic expansion of the Green

function G( ⋅ , y) at the conical point Pk via

(2.13) G(ζk , y) = G(Pk , y) −
nk

∑
l=1

1
4πl

G1/ζ l

k

(y; 0)ζ l

k

−
nk

∑
l=1

1
4πl

G
1/ζ

l

k

(y; 0)ζ
l

k + o(∣ζk ∣nk).

● he constant term, G(Pk , y), in (2.13) can be represented as

(2.14) G(Pk , y) =
1
2π

lim
λ→0

[Glog ∣ζk ∣(y; λ) −
2π

Area(X)λ ] .

Proof Until the end of this proof, we assume that X0 = X/{P1 , . . . , PM , y}; i.e., we
consider the point y as a conical point of angle 2π. hen G( ⋅ , y) belongs to the do-
main of the operator∆∗; the latter operator is now the adjoint to the symmetric Lapla-
cian with domain C∞0 (X/{P1 , . . . , PM , y}).

It should be noted that the functions u from D(∆∗) have the asymptotics

u(ζ(x)) = i√
2π

Ly(u) log ∣ζ ∣ +
i√
2π

cy(u) + o(1)

as x → y (here the local parameter ζ is deûned via ρ = ∣dζ ∣2 near y and ζ(y) = 0).
Since ∫X G1/ζ l

k

dS = 0 and ∆∗xG(x , y) = const = − 1
Area(X) , one has

Ω([G( ⋅ , y)], [G1/ζ l

k

( ⋅ ; 0)]) = 0.
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On the other hand, (2.5) implies

Ω([G( ⋅ , y)], [G1/ζ l

k

( ⋅ ; 0)])

= hk , l(G( ⋅ , y))Hk , l(G1/ζ l

k

( ⋅ ; 0)) −Ly(G( ⋅ , y)) cy(G1/ζ l

k

( ⋅ ; 0))

=
√

4πlhk , l(G( ⋅ ; y)) − 1√
2πi

[
√

2π
i

G1/ζ l

k

(y; 0)]

and
hk , l(G( ⋅ ; y)) = − 1√

4πl
G1/ζ l

k

(y; 0).

Similarly,

ak , l(G( ⋅ ; 0)) = − 1√
4πl

G
1/ζ

l

k

(y; 0),

and (2.13) follows.
Let R(x , y; λ) be the resolvent kernel of ∆F . Consider the expression

(2.15) E(λ) = ⟨(∆∗ − λ)[R( ⋅ , y; λ) + 1
Area(X)λ ] , Glog ∣ζk ∣( ⋅ ; λ) −

2π
Area(X)λ⟩

− ⟨R( ⋅ , y; λ) + 1
Area(X)λ , (∆

∗ − λ)[Glog ∣ζk ∣( ⋅ ; λ) −
2π

Area(X)λ ]⟩ .

Since limλ→0 R( ⋅ , y; λ) + 1
Area(X)λ = G( ⋅ , y)�1 and1

∫
X

[Glog ∣ζk ∣( ⋅ ; λ) −
2π

Area(X)λ ] = 0

one has E(λ) = o(1) as λ → 0. On the other hand, computing E(λ) via (2.5), one gets

E(λ) = [Glog ∣ζk ∣(y; λ) −
2π

Area(X)λ ] − 2π[R(Pk , y; λ) +
1

Area(X)λ ] ,

which implies (2.14). ∎

henextproposition immediately follows from (2.13), (2.14), andRoelcke’s formula
(2.3).

Proposition 2.5 One has the following explicit expressions for the special growing

solutions of the homogeneous Laplace equation (2.11) subject to (2.12):

G1/ζ l

k

(y; 0) = − 1
(l − 1)! Area (X) ∫X

Ω(l−1)
y−q (Pk)dS(q) l = 1, . . . , nk ,(2.16)

G
1/ζ

l

k

(y; 0) = G1/ζ l

k

(y; 0).

1he latter equality can be checked as follows

∫
X

G = ∫
X

(F − g) = ∫
X

F − (
1
λ
∫
X

∆∗g −
1
λ
∫
X

f )

= ∫
X

F +
1
λ
∫
X

f =
1
λ
∫
X

∆∗F =
2π
λ
,
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Here, the expression Ω(l−1)
y−q (Pk) should be understood as follows. Write the one-form

Ωy−q in the distinguished local parameter ζk in a vicinity of the conical point Pk :

Ωy−q = ω(ζk)dζk .

hen

Ω(l−1)
y−q (Pk) ∶= ( d

dζk
)

l−1
ω(ζk)∣ζk=0 .

Moreover, one has the relation

(2.17) lim
λ→0

[Glog ∣ζk ∣(y; λ) −
2π

Area(X)λ ] =

1
Area(X)2 ∫

X
∫
X

R∫
Pk

p

Ωy−q dS(q)dS(p).

2.3.1 Explicit Expressions for S(0)

Rewriting Ωy−q as

(2.18) Ωy−q(z) = ∫
q

y

W(z, ⋅ ) − π

g

∑
α ,β=1

(IB)−1
αβvα(z)∫

q

y

vβ

+ π

g

∑
α ,β=1

(IB)−1
αβvα(z)∫

q

y

vβ

and using in (2.17) the reciprocity law for normalized diòerentials of the third kind

R∫
R

S

ΩP−Q =R∫
P

Q

ΩR−S

(see, e.g., [6, p. 67]), one can easily ûnd all the terms of the asymptotic expansions of
G1/ζ l

k

(y; 0) and limλ→0[Glog ∣ζk ∣(y; λ)− 2π
Area(X)λ ] as y → Pl ; l = 1, . . . ,M. his results

in explicit formulas for all the ûnite entries of the matrix S(0). For instance, (2.17)
and the reciprocity law immediately imply that

(2.19) S
log ∣ζk ∣, ζ l (0) = 1

2Area(X) ∫X

ΩPk−p(Pl)dS(p), l ≠ k.

Similarly, from (2.16) and (2.18), one gets the relation

(2.20) S
1
ζk
, ζ l (0) = π

g

∑
α ,β=1

(IB)−1
αβvα(Pk)vβ(Pl) = πB(Pk , Pl),

where B is the Bergman reproducing kernel for holomorphic diòerentials (see, e.g.,
[8, (1.25)]). (Here, the value of a diòerential at Pl means its value in the distinguished
local parameter at this point.) Following [7, 33], introduce the Schiòer bidiòerential
on X as

(2.21) S(P,Q) =W(P,Q) − π

g

∑
α ,β=1

(IB)−1
αβvα(P)vβ(Q).
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he Schiòer projective connection, SSch, is deûned via the asymptotics of the Schiòer
bidiòerential at the diagonal P = Q:

(2.22) S(x(P), x(Q)) =

( 1
(x(P) − x(Q))2 +

1
6
SSch(x(P)) + O(x(P) − x(Q)))dx(P)dx(Q),

as Q → P. From (2.16) and (2.18) together with (2.21) and (2.22), one gets (cf. [11])

S
1
ζk
, ζ l (0) = −S(Pk , Pl); l ≠ k,(2.23)

S
1
ζk
, ζk(0) = − 1

6
SSch(ζk)∣ ζk=0 .(2.24)

In the same manner, one can ûnd explicit expressions for all the remaining (ûnite)
entries of S(0); we leave the details to the reader.

Remark 2.6 It looks natural to deûne the regularized values of the singular entries
of S(λ) at λ = 0 via

reg S
log ∣ζk ∣,1 l (0) ∶= lim

λ→0
(S

log ∣ζk ∣,1 l (λ) − 2π
Area(X)λ) .

In the case of a smooth surface X with a puncture P, considered as a conical point
of angle 2π (see, e.g., [1, 5]), the special growing solution Glog d( ⋅ ,P)( ⋅ ; λ) coincides
with 2πR( ⋅ , P; λ), where R is the resolvent kernel of the Friedrichs extension of the
Laplacian on X/P and d is the geodesic distance on X; the above regularization of a
(single) entry of S(0), coincides with 2πm(P), where m(P) is the so-called Robin’s
mass (see, e.g., [26,30])

reg S
log d(P , ⋅ ),1(0) = m(P) = lim

Q→P
G(P,Q) − 1

2π
log d(P,Q).

In particular, formula (2.17) leads to an explicit expression for m(P). Unfortu-
nately, the latter expression contains the ûnite part of a diverging line integral and,
therefore, is not as eòective as formulas (2.19), (2.20), (2.23), (2.24). It should be noted
that using the technique of string theorists ([27,34]), one can get a nice expression for
the centeredRobin’smass m(P)− M(X)

Area(X) ,whereM(X) = ∫X m(P)dS(P). Following
[34], deûne the function Φ on X × X via

− 4πΦ(z,w) ∶= −2π[ ∫
z

w

Ð→
v ]

t

(IB)−1I∫
z

w

Ð→
v

+ log ( ∣E(z,w)∣2(ρ(z)ρ(w))1/2) .

Here, ρ(z, z)∣dz∣2 is the (smooth) metric on X and E(z,w) is the prime-form (see,
e.g., [7]),Ð→v = (v1 , . . . , vg)t . he results from [34, §5] imply the relation

(2.25) −G(z,w) + 1
2
m(z) + 1

2
m(w) = Φ(z,w) + C
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with some constant C. Integrating (2.25), one gets

(2.26)
M(X)

2
+ 1

2
m(w)Area(X) = ∫

X

Φ(z,w)dS(z) + CArea(X)

and

M(X)Area(X) =∬
X×X

Φ(z,w)dS(z)dS(w) + CArea(X)2 .

his gives the following explicit expression for centered Robin’s mass:

m(w) − M(X)
Area(X) = 2

Area(X) ∫X

Φ(z,w)dS(z)

− 2
Area(X)2 ∬

X×X
Φ(z,w)dS(z)dS(w).

Moreover, an interesting counterpart of Roelcke formula (2.3) follows from (2.25)
and (2.26):

G(z,w) = 1
2
(m(z) − M(X)

Area(X)) +
1

Area(X) ∫X

Φ(z,w)dS(z) −Φ(z,w),

mentioned in the last lines of [34, §5].

2.3.2 Kernel of ∆∗

Motivated by the recent paper [20], we will write the basis in the kernel of the adjoint
operator ∆∗ (we remind the reader that ∆ is the symmetric Laplacian with domain
C∞0 (X/{P1 , . . . , PM})). his makes the constructions from [20,heorem 1]more ex-
plicit.

Putting v = 1 in (2.5), one gets

M

∑
k=1

Lk(u) = 0

for any u ∈ Ker∆∗. On the other hand, for any two points P and Q of X, there exists
a harmonic function u on X/{P,Q} with asymptotics u(x) = log d(x , P) + O(1) as
x → P and u(x) = − log d(x ,Q) + O(1) as x → Q. hus, Proposition 2.5 and the
equality Ker∆F = {const} imply the following statement.

Proposition 2.7 he basis of Ker∆∗ consists of

(i) 1,
(ii) functions G1/ζ l

k

( ⋅ ; 0); k = 1, . . . ,M; l = 1, . . . , nk from Proposition 2.5,
(iii) functions G

1/ζ
l

k

( ⋅ ; 0); k = 1, . . . ,M; l = 1, . . . , nk from Proposition 2.5,

(iv) functions FP1 ,Pk
(P) =R ∫

P ΩP1−Pk
; k = 2, . . . ,M, where ΩP1−Pk

is themeromor-

phic one-form from (2.15).
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3 Self-adjoint Laplacians on Genus Two Polyhedral Surfaces with
one Conical Point

Herewe consider several applications of the results of the previous section to concrete
classes of polyhedral surfaces. In order to avoid unnecessary technical complications,
we choose the simplest case of genus two surfaces with a single conical point P of
conical angle 6π. hus, using the setting of Section 2.2.1, one has M = 1, n1 = 2,
β ∶= β1 = 6π,

Ω([u], [v]) = X(u)(0 −I5
I5 0 )X(v)t ,

X(u) = (L(u),H1(u),H2(u),A1(u),A2(u), c(u), h1(u), h2(u), a1(u), a2(u)) ,

and the asymptotics in the vicinity of the point P of a function u from D(∆∗) in the
distinguished local parameter ζ has the form

u = 1√
8π

H2(u)
1
ζ2 +

1√
8π

A2(u)
1

ζ
2 +

1√
4π

H1(u)
1
ζ
+ 1√

4π
A1(u)

1
ζ

+ i√
2π

L(u) log ∣ζ ∣ + i√
2π

c(u) + 1√
4π

h1(u)ζ +
1√
4π

a1(u)ζ

+ 1√
8π

h2(u)ζ2 + 1√
8π

a2(u)ζ
2
+ χv

with v = o(∣ζ ∣2).
Wewill beworkingwith the following three self-adjoint extensions of the symmet-

ric Laplacian ∆ with domain C∞0 (X/{P}):
● the Friedrichs extension, ∆F , corresponding to the lagrangian subspace of
D(∆∗)/D(∆)

L(u) = H1(u) = H2(u) = A1(u) = A2(u) = 0,
● the maximal singular extension, ∆sing, corresponding to the lagrangian sub-

space
L(u) = h1(u) = h2(u) = a1(u) = a2(u) = 0;

● the holomorphic extension, ∆hol, corresponding to the lagrangian subspace

L(u) = A1(u) = A2(u) = a1(u) = a2(u) = 0.

Remark 3.1 he above subspaces are lagrangianwith respect to the symplectic form
([u], [v])↦ Ω([u], [v̄]).

Proposition 3.2 he operators (∆sing−λ)−1−(∆F−λ)−1 and (∆hol−λ)−1−(∆F−λ)−1

are ûnite dimensional and one has the following representations for their traces:

Trace[(∆sing − λ)−1 − (∆F − λ)−1] = −Trace (T−1(λ)T ′(λ)) ,(3.1)

Trace[(∆hol − λ)−1 − (∆F − λ)−1] = −Trace (P−1(λ)P′(λ)) ,(3.2)

where thematrices T(λ) and P(λ) are given in (3.5) and (3.10).

https://doi.org/10.4153/S0008414X19000336 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000336


1336 A. Kokotov and K. Lagota

Proof Notice that the kernel of the operator ∆∗ − λ with λ ∈ C/Spectrum(∆F) is
generated by the special growing solutions

G1/ζ2( ⋅ ; λ), G1/ζ
2( ⋅ ; λ), G1/ζ( ⋅ ; λ), G1/ζ( ⋅ ; λ), Glog ∣ζ∣( ⋅ ; λ)

of the equation ∆∗u − λu = 0, and, therefore, the deûciency indices of ∆ are (5, 5).
So we are in a position to use the Krein formula for the diòerence of the resolvents
of two self-adjoint extensions of a symmetric operator with (equal) ûnite deûciency
indices (see, e.g., [2, §84]):

(3.3) [(∆sing − λ)−1 − (∆F − λ)−1]( f ) =

∑
α=1/ζ2 , 1/ζ , 1/ζ

2
, 1/ζ

Gα( ⋅ ; λ) ∑
β=1/ζ2 , 1/ζ , 1/ζ

2
, 1/ζ , log ∣ζ∣

xαβ(λ)⟨ f ,Gβ( ⋅ , λ)⟩

= ∑
α=1/ζ2 , 1/ζ , 1/ζ

2
, 1/ζ

Xα(λ)Gα( ⋅ ; λ).

Introducing u ∈ D(∆F) via (∆F − λ)u = f and comparing the coeõcients in the
asymptotic expansion of the le�- and right-hand sides of (3.3), one gets

(3.4) ( 1√
4π

h1(u),
1√
8π

h2(u),
1√
4π

a1(u),
1√
8π

a2(u))
t

=

T(λ)(X1/ζ , X1/ζ2 , X1/ζ , X1/ζ
2)t

with

(3.5) T(λ) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

S1/ζ , ζ(λ) S1/ζ2 , ζ(λ) S1/ζ , ζ(λ) S1/ζ
2
, ζ(λ)

S1/ζ , ζ2(λ) S1/ζ2 , ζ2(λ) S1/ζ , ζ2(λ) S1/ζ
2
, ζ2(λ)

S1/ζ , ζ(λ) S1/ζ2 , ζ(λ) S1/ζ , ζ(λ) S1/ζ
2
, ζ(λ)

S1/ζ , ζ
2

(λ) S1/ζ2 , ζ
2

(λ) S1/ζ , ζ
2

(λ) S1/ζ
2
, ζ

2

(λ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Since (3.4) holdswith an arbitrary le�-hand side (one can take as u an arbitrary func-
tion from D(∆F)), thematrix T(λ) is invertible.

Notice that

⟨(∆∗ − λ)u,G1/ζ( ⋅ ; λ)⟩ = ⟨(∆∗ − λ)u,G1/ζ( ⋅ ; λ)⟩ − ⟨u, (∆∗ − λ)G1/ζ( ⋅ ; λ)⟩

= Ω(u,G1/ζ( ⋅ ; λ)) =
√

4πh1(u).

Similarly,

⟨(∆∗ − λ)u,G1/ζ( ⋅ ; λ)⟩ =
√

4πa1(u),(3.6)

⟨(∆∗ − λ)u,G
1/ζ

2( ⋅ ; λ)⟩ =
√
8πh2(u),

and

⟨(∆∗ − λ)u,G1/ζ2( ⋅ ; λ)⟩ =
√
8πa2(u).
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Diòerentiating (2.8) with respect to λ and using (3.6), one gets the relations

d

dλ
S
∗,ζ(λ) = − 1

4π
⟨G∗( ⋅ , λ),G1/ζ( ⋅ ; λ)⟩ ,(3.7)

d

dλ
S
∗,ζ2(λ) = − 1

8π
⟨G∗( ⋅ , λ),G1/ζ

2( ⋅ ; λ)⟩ ,

and
d

dλ
S
∗,ζ(λ) = − 1

4π
⟨G∗( ⋅ , λ),G1/ζ( ⋅ ; λ)⟩ ,

d

dλ
S
∗,ζ

2

(λ) = − 1
8π

⟨G∗( ⋅ , λ),G1/ζ2( ⋅ ; λ)⟩ ,

with

∗ = 1/ζ , 1/ζ , 1/ζ2 , 1/ζ
2
.

Now (3.3) can be rewritten as

[(∆sing − λ)−1 − (∆F − λ)−1]( f )
= (G1/ζ( ⋅ ; λ),G1/ζ2( ⋅ ; λ),G1/ζ( ⋅ ; λ),G1/ζ

2( ⋅ ; λ))

× T
−1(λ)( 1√

4π
h1(u),

1√
8π

h2(u),
1√
4π

a1(u),
1√
8π

a2(u))
t

= (G1/ζ( ⋅ ; λ),G1/ζ2( ⋅ ; λ),G1/ζ( ⋅ ; λ),G1/ζ
2( ⋅ ; λ))T−1(λ)

× ( 1
4π

⟨ f ,G1/ζ( ⋅ , λ)⟩ ,
1
8π

⟨ f ,G
1/ζ

2( ⋅ , λ)⟩ , 1
4π

⟨ f ,G1/ζ( ⋅ ; λ)⟩ ,
1
8π

⟨ f ,G1/ζ2( ⋅ ; λ)⟩)
t

.

(3.8)

Relation (3.1) immediately follows from (3.8), the elementary relation

Trace g⟨ ⋅ , h⟩ = ⟨g , h⟩,

and identities (3.7).
Similarly,

[(∆hol − λ)−1 − (∆F − λ)−1]( f ) = ∑
α=1/ζ2 , 1/ζ

Xα(λ)Gα( ⋅ ; λ),(3.9)

( 1√
4π

a1(u),
1√
8π

a2(u))
t

= P(λ)(X1/ζ(λ), X1/ζ2(λ))t

with

(3.10) P(λ) =
⎛
⎝
S1/ζ , ζ(λ) S1/ζ2 , ζ(λ)
S1/ζ , ζ

2

(λ) S1/ζ2 , ζ
2

(λ)
⎞
⎠

and (3.2) follows from the same considerations as above. ∎

he following proposition is an immediate corollary of (2.16) (cf. Section 2.3.1).
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Proposition 3.3 Introduce the function H( ⋅ , ⋅ ) (both arguments are distinguished

local parameters in a small vicinity of P) via

W = [ 1
(ζ(Q) − ζ(R))2 +H( ζ(Q), ζ(R))]dζ(Q)dζ(R)

as Q , R → P, whereW is the canonical meromorphic bidiòerential on X (in particular,

one has the relation

6H( ζ(P), ζ(P)) = SB(ζ(P)),
where SB is the Bergman projective connection). hen thematrix T(0) is given via

(3.11)
⎛
⎜⎜⎜
⎝

T11(0) T12(0)
T21(0) T22(0)
T31(0) T32(0)
T41(0) T42(0)

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

− 1
6 SSch(0) −H′

ζ
(ζ , ζ′)∣(0,0) + π∑(IB)−1

αβ
vα(0)v′β(0)

− 1
2H

′
ζ′(ζ , ζ′)∣(0,0) +

π

2 ∑(IB)−1
αβ
vα(0)v′β(0) − 1

2H
′′
ζζ′(ζ , ζ′)∣(0,0) +

π

2 ∑(IB)−1
αβ
v′α(0)v′β(0)

πB(0, 0) π∑(IB)−1
αβ
v′α(0)vβ(0)

π

2 ∑(IB)−1
αβ
vα(0)v′β(0)

π

2 ∑(IB)−1
αβ
v′α(0)v′β(0)

⎞
⎟⎟⎟⎟⎟
⎠

and

⎛
⎜⎜⎜
⎝

T13(0) T14(0)
T23(0) T24(0)
T33(0) T34(0)
T43(0) T44(0)

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

T31(0) T32(0)
T41(0) T42(0)
T11(0) T12(0)
T21(0) T22(0)

⎞
⎟⎟⎟⎟
⎠
.

One also has

(3.12) P(0) = (T31(0) T32(0)
T41(0) T42(0)

) .

he next proposition describes the asymptotic behaviour of the S-matrix as
λ → −∞.

Proposition 3.4 All the entries of the matrix T(λ) except S1/ζ ,ζ(λ), S1/ζ2 ,ζ
2

(λ),
and their conjugates S1/ζ ,ζ(λ), S1/ζ

2
,ζ2(λ) are O(∣λ∣−∞) as λ → −∞. One has the

asymptotics

S
1/ζ ,ζ(λ) = −21/3√3Γ(2/3)

πΓ(4/3) (−λ)1/3 + O(∣λ∣−∞),

S
1/ζ2 ,ζ

2

(λ) = −2−1/3√3Γ(1/3)
πΓ(5/3) (−λ)2/3 + O(∣λ∣−∞),

and

(3.13) detT(λ) = ( 27
2π2 )

2
λ
2 + O(∣λ∣−∞), det P(λ) = − 27

2π2 λ + O(∣λ∣−∞)

as λ → −∞.
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Proof (cf. [12]) Passing to polar coordinates, r, ϕ such that ζ = r1/3e iϕ/3; 0 ≤ ϕ ≤ 6π,
one ûnds that the functions

Kν(
√
−λr)e−iνϕ ; ν = 1

3 ,
2
3 ,

where Kν is themodiûed Bessel function, satisfy the equation (2.7) in a vicinity of P.
he well-known asymptotics of themodiûed Bessel function (with ν > 0) reads as

Kν(y) =
π

2 sin(νπ)[
y−ν

2−νΓ(1 − ν) −
yν

2νΓ(1 + ν) + O(y2−ν)]

as y → 0. hus, the functions

Φν ∶= π
−12−νΓ(1 − ν) sin(πν)(

√
−λ)ν

Kν(
√
−λr)e−iνϕ ,

ν = 1/3, 2/3 satisfy (2.7) in a vicinity of P and have the asymptotics

Φ1/3(ζ , ζ; λ) =
1
ζ
− 21/3√3Γ(2/3)

πΓ(4/3) (−λ)1/3
ζ + o(∣ζ ∣2),(3.14)

Φ2/3(ζ , ζ; λ) =
1
ζ2 −

2−1/3√3Γ(1/3)
πΓ(5/3) (−λ)2/3

ζ
2
+ o(∣ζ ∣2)

as ζ → 0.
Now, notice that one can change the construction of the special growing solutions

from the proof of Proposition 2.2 replacing function F by Φν ; this gives

G1/ζ( ⋅ ; λ) = Φ1/3( ⋅ ; λ) − (∆F − λ)−1(∆∗ − λ)[χΦ1/3( ⋅ ; λ)],(3.15)

G1/ζ2( ⋅ ; λ) = Φ2/3( ⋅ ; λ) − (∆F − λ)−1(∆∗ − λ)[χΦ2/3( ⋅ ; λ)].

Since Kν(x) and all its derivatives are O(e−x) as x → +∞ and the support of
(∆∗−λ)[χΦν( ⋅ ; λ)] is separated from the origin, all the coeõcients in the asymptotic
expansions (2.4) of second terms in the right-hand sides of (3.15) are exponentially
decreasing as λ → −∞, and, therefore, all the statements of the proposition follow
from (3.14). ∎

he next proposition is a direct consequence of [10,heorem 2] and (3.13).

Proposition 3.5 Introduce the zeta-regularized determinants of the operators ∆F − λ,

∆sing − λ and ∆hol − λ via

detA = exp{−ζ′A(0)},
where ζA(s) is the operator zeta-function of an operator A (without zero modes). hen

(3.16) det(∆sing − λ) = ( 2π2

27
)

2
detT(λ)det(∆F − λ)

for real λ not belonging to the union of the spectra of ∆F and ∆sing. Similarly,

(3.17) det(∆hol − λ) = 2π2

27
det P(λ)det(∆F − λ)

for real λ not belonging to the union of the spectra of the operators ∆F and ∆hol.
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Since dimKer∆F = 1, Proposition 3.5 shows that the order of the zero of detT(λ)
(resp. det P(λ)) at λ = 0 is one unit less than the dimension of the kernel of ∆sing
(resp. ∆hol). We will prove in the next subsection that generically dimKer∆hol = 1.
We conjecture that this is also the case for ∆sing (i.e., that generically detT(0) ≠ 0).
However, we will show that by choosing a “very symmetric” polyhedron X, one can
get dimKer∆sing = 3.

So, under assumption of genericity, passing to the limit λ → 0 in (3.16) and (3.17),
one gets the following comparison formulas for modiûed (i.e., with zero modes ex-
cluded) determinants of s. a. extensions ∆F , ∆sing, and ∆hol.

heorem 3.6 Let dimKer∆sing = 1. hen

(3.18)
∗

det∆sing = ( 2π2

27
)

2
detT(0)

∗

det∆F ,

where T(0) is explicitly given in (3.11).
Let dimKer∆hol = 1 (i.e., P is not a Weierstrass point of X; see Proposition 3.11).

hen

∗

det∆hol =
2π2

27
det P(0)

∗

det∆F ,

where P(0) is given in (3.12).

Remark 3.7 If (2P) = C, where C is the canonical class, the �at metric on X with
a single conical point at P has the form ∣ω∣2, where ω is a holomorphic diòerential on
X with double zero at P. In this case, an explicit expression for det∗ ∆F can be found
in [16]. An explicit formula for det∗ ∆F for an arbitrary P can be found in [15].

Remark 3.8 Let us mention two geometric constructions leading to a �at surface
X of genus two with a single conical singularity.

(i) Take a compact Riemann surface X of genus two and choose a point P ∈ X.
hen according to the Troyanov theorem ([32]), there exists the unique (up to rescal-
ing) �at conformal metric on X with conical singularity of angle 6π at P. If the divisor
(2P) is in the canonical class, then there exists a holomorphic one-form on X with
divisor 2P and the Troyanovmetric necessarily coincides (up to resacaling)with ∣ω∣2.
In this case, the metric has trivial holonomy. If the divisor (2P) does not belong to
the canonical class, then the Troyanov metric must have nontrivial holonomy along
some nontrivial cycle on X. (It should be noted that the holonomy of the Troyanov
metric along a small loop around the conical point is always trivial, since the tangent
vector turns to the angle 6π a�er parallel transform along this loop.)

(ii) (See Figure 1.) In the case of trivial holonomy, the �at surface X can be pro-
duced via the well known pentagon construction (see, e.g., [23]). Consider a penta-
gon Π in the complex plane. Let the center of one of its sides coincidewith the origin.
Gluing together the parallel sides of the octagon Π ∪ (−Π) one gets a �at surface X
of genus 2 with a single conical singularity of conical angle 6π. he one-form dz in
the complex plane gives rise to a holomorphic one-form ω on X with a single double
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Figure 1: Gluing schemes for X: trivial (le�) and nontrivial (right) holonomy.

zero at the point P on X that came from eight vertices of the octagon glued together.
he natural �at metric on X has trivial holonomy and coincides with ∣ω∣2.

Now take the octagon Π∪ (−Π) and deform it, keeping the lengths of all the sides
ûxed (a�er this deformation the opposite sides are no longer parallel). Glue the sides
together following the same gluing scheme as before. Again, one gets a �at surface of
genus two with a single conical singularity of angle 6π, but now the corresponding
�at metric has nontrivial holonomy. he parallel transport along the closed loop that
came from a segment connecting two points on the opposite sides of the deformed
octagon turns the tangent vector for the angle that is equal to the angle between these
two opposite sides.

3.0.1 One More Comparison Formula for Resolvent Kernels

Here we brie�y describe an interesting counterpart to formula (3.9), which holds in
the case of general conformal �at conical metrics of trivial holonomy on compact
Riemann surfaces X of genus g ≥ 2. All thesemetrics have the form ∣ω∣2, where ω is
a holomorphic one-form on X. Flat surfaces X of genus 2 with a single conical point
P of angle 6π enter this class if and only if P is aWeierstrass point of X.

Proposition 3.9 Let themetric on X be given by ∣ω∣2, where ω is a holomorphic one-

form. Let P1 , P2 , . . . , PM and let M ≤ 2g − 2 be the distinct zeroes of ω or, equivalently,

the conical points of the metric ∣ω∣2. hen there is the following relation between the

resolvents, Rhol and RF , of the holomorphic and Friedrichs extensions of the symmetric

Laplacian on X/{P1 , . . . , PM}:

(3.19) Rhol(x , y; λ) =
4
λ

1
ω(x)ω(y)

∂x∂yRF(x , y; λ).

Proof We start by reminding the reader of the standard relation

(3.20) ∂x∂yGF(x , y) = −
1
4

g

∑
α ,β=1

(IB)−1
αβvα(x)vβ(y) = −

1
4
B(x , y),
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where B(x , y) is the reproducing kernel for holomorphic diòerentials. Here,GF is just
the Green function from (2.3); the subscript is introduced to emphasize that we are
dealing with the Green function of the Friedrichs Laplacian. Equation (3.20) follows
directly from (2.3) (the factor 1/4 appears due to the presence of the factor 4 in the
deûnition of the Laplacian; some authors do not introduce these factors).
According to [9], one has the relations

(3.21) ∆F = 4D∗zDz and ∆hol = 4DzD
∗
z ,

where Dz is the closure of the operator
1
ω
∂z ∶ C∞0 (X/{P1 , . . . , PM}) ⊂ L2(X , ∣ω∣2)Ð→ L2(X , ∣ω∣2).

Clearly, D∗z acts as 1
ω
∂z .

Now (3.21) immediately implies that the function ϕm is anormalized eigenfunction
of ∆F corresponding to a nonzero eigenvalue λm if and only if 2

√
λm

Dzϕm is a normal-
ized eigenfunction of ∆hol corresponding the eigenvalue λm . Taking into account that
Ker∆hol is spanned by the functions vα

ω
and, therefore, the orthogonal projection in

L2(X , ∣ω∣2) onto Ker∆hol is the integral operator with the integral kernel B(x ,y)
ω(x)ω(y)

,
one gets the following representation for the resolvent kernel of ∆hol (in the sense of
distribution theory):

Rhol(x , y; λ) = −
B(x , y)

ω(x)ω(y)
1
λ
+ 4 ∑

λm≠0

Dxϕm(x)Dyϕm(y)
(λm − λ)λm

.

Taking into account the relations
1

(λm − λ)λm

= 1
λ
( 1
λm − λ

− 1
λm

) ,

RF(x , y, λ) = −
1

Area(X)λ + ∑
λm≠0

ϕm(x)ϕm(y)
λm − λ

,

GF(x , y) = ∑
λm≠0

ϕm(x)ϕm(y)
λm

,

andmaking use of (3.20), one arrives at (3.19). ∎

Corollary 3.10 For �at metrics ∣ω∣2 with trivial holonomy the Green function Ghol of

the holomorphic extension ∆hol is related to the Friedrichs Green function GF via

Ghol(x , y) = ∫
X

∂xGF(x , z)∂yGF(z, y)
1

ω(x)ω(y)
dS(z).

3.1 Kernels of ∆hol and ∆sing

3.1.1 Kernel of the Holomorphic Extension

he following proposition gives the complete description of the kernel of the holo-
morphic extension of the symmetric Laplacian on X/{P}.
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Proposition 3.11 Suppose P is not aWeierstrass point of X. hen the kernel of ∆hol
consists of constants: dimKer∆hol = 1. If P is a Weierstrass point, then the kernel of

∆hol has dimension 2 and is spanned by 1, and ameromorphic function with single pole

at P ofmultiplicity 2.

Proof Let U ∈ Ker∆hol. Let ξ be distinguished parameter near P and let Xє =
X/{∣ξ∣ ≤ є}. Using Stokes formula, one gets

0 = − 1
4
⟨u, ∆u⟩

= lim
є→0

{∬
Xє

∣∂u∣2 + ∮
∣ξ∣=є

(A/ξ2 + B/ξ + C + Dξ + Eξ2 + o(∣ξ∣2))

× ∂
ξ
(A/ξ2 + B/ξ + C + Dξ + Eξ2 + o(∣ξ∣2))}

=∬
X

∣∂u∣2 ,

and, therefore, U is meromorphic on X with a single pole of degree less or equal to 2
at P. It remains to notice that

● there are no meromorphic functions with a single pole of order 1 on Riemann
surfaces of positive genus;

● for Riemann surfaces X of genus 2 the point P ∈ X is aWeierstrass point if and
only if there exists ameromorphic function on X with single double pole at P.∎

3.1.2 Singular Extension: The Very Symmetric Case

Consider a hyperelliptic surface X of genus 2 via µ2 =∏6
j=1(λ − λ j) with

λk = λ1 + r
2
e

2πi(k−1)
5 , k = 2, . . . , 6; r > 0.

Consider a holomorphic one-form ω on X given by

ω = (λ − λ1) dλ√
∏6

j=1(λ − λ j)
.

Clearly, ω has a double zero at P = (λ1 , 0) ∈ X, and themetric ∣ω∣2 is a �at metric on
X with unique conical point at P of angle 6π.

Proposition 3.12 he kernel of the singular self-adjoint extension∆sing of a symmetric

Laplacian on X/{P} has dimension 3.

Proof here are two natural holomorphic local parameters on X near P: the one
related to the ramiûed double covering X ∋ (λ, µ)↦ λ ∈ C ⊂ P1,

ζ =
√

λ − λ1 ,

and the distinguished parameter ξ for the conical metric ∣ω∣2 related to the parameter
ζ via

ξ(ζ) = ( ∫
ζ

0

2w2dw√
w10 − r10

)
1/3

.
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Since
ω = C(ζ2 + O(ζ 12))dζ

and, therefore,

(3.22) ξ
3 = C( ζ3 + O(ζ 13)) ,

one has

(3.23)
1
ζ2 = C

ξ2
+ o(∣ξ∣3)

as ξ, ζ → 0 (C is a constant which diòers from one formula to another). Now (3.23)
implies that themeromorphic function

(3.24) P ↦ f (P) = 1
λ(P) − λ1

on X with a single double pole at P belongs to Ker∆sing. Clearly, f and 1 also belong
to Ker∆sing. hus, dimKer∆sing ≥ 3.

It turns out that in the case of the surface X, one can further specify the asymp-
totical expansion of the (unique up to a constant) harmonic function g on X with a
single singularity at P with

g(ξ, ξ) = 1
ξ
+ O(1).

Namely, one has

(3.25) g = 1
ξ
+ C + αξ + o(∣ξ∣2)

with α ≠ 0.
According to (2.24), the coeõcient near ξ in the asymptotical expansion of g near

P is equal to − 1
6 SSch(ξ)∣ξ=0. Using Z5-symmetry of X, it is easy to show that this

coeõcient must vanish. First, notice that this quantity vanishes if

SSch(ζ)∣ζ=0 = 0.

his follows from the change of variables rule for a projective connection:

(3.26) SSch(ξ) = SSch(ζ)(
dζ

dξ
)

2
+ {ζ , ξ}

(due to (3.22), the Schwarzian derivative on the right-hand side of the last equality
vanishes at ξ = 0).

Without lossof generality, one can assume that λ1 = 0. Consider the automorphism
of X: λ ↦ e

2πi

5 λ. Under this automorphism ζ ↦ e
πi

5 ζ and since the Schiòer projective
connection is independent of the choice of basic cycles on X, one gets from (3.26) the
relation

SSch(ζ)∣ζ=0 = e
2πi

5 SSch(ζ)∣ζ=0 ,
implying SSch(ζ)∣ζ=0 = 0.
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Using (3.11) and (3.24) together, it is easy to show that in the asymptotic expansion
of g there are no ξ2 and ξ

2
terms. Notice that normalized holomorphic diòerentials

v1 and v2 on X are linear combinations of

ω1 =
dλ√

∏6
k=1(λ − λk)

= 2dζ√
ζ 10 − r10

,

ω2 =
λdλ√

∏6
k=1(λ − λk)

= 2ζ2dζ√
ζ 10 − r10

,

and therefore
v
′
1,2(ζ)∣ζ=0 = 0.

Since v′1,2(ξ) = v′1,2(ζ)( d ζd ξ )
2 + v1,2(ζ) d

2
ζ

(d ξ)2
and d

2
ζ

(d ξ)2
= 0 (due to (3.22)), one gets

(3.27) v
′
1,2(ξ)∣ξ=0 = 0.

Relation (3.24) implies that one has T12(0) = 0 in (3.11) and from the symmetry
H(x , y) = H(y, x) of the function H from Proposition 3.3 and (3.27), one concludes
that T21(0) = 0 and, therefore, there is no ξ2 term in the expansion of g. Due to (3.27)
one has T41(0) = 0 and, therefore, the ξ

2
is also absent.

It remains to notice that the coeõcient α near ξ equals to πB(ξ, ξ)∣ξ=0. Since the
imaginary part of thematrix of b-periods, IB, is positive deûnite, one has α ≠ 0 and
(3.25) is proved.

To prove that Ker∆sing = lin. span{ f , f , 1}, it suõces to prove that a function W

from Ker∆∗ with asymptotics

W = A
ξ
+ B

ξ
+ o(∣ξ∣2)

cannot belong to Ker∆sing, unless A = B = 0. Assuming W ∈ Ker∆sing, one has
W − Ag − Bg ∈ Ker∆F and, therefore,

W = Ag + Bg + C
which contradicts (3.25) unless A = B = 0. ∎

Remark 3.13 In the case of the very symmetric surface X with dimKer∆sing = 3,
the comparison formula for the determinants (i.e., equation (3.18)) turns into

(3.28)
∗

det∆sing = 2( π2

27
)

2 d2 detT(λ)
(dλ)2 ∣

λ=0

∗

det∆F .

It should be noticed that the derivatives of the entries of thematrix T(λ) from (3.5)
at λ = 0 (and, therefore, the factor d

2 det T(λ)
(dλ)2

∣λ=0 in (3.28)) can be explicitly computed.
Namely, explicit expressions for the derivatives of the ûrst order can be obtained via
plugging λ = 0 in (3.7) and then using (2.16). To get expressions for the second deriva-
tives, for instance d

2

(dλ)2
S1/ζ2 , ζ(λ)∣λ=0, introduce (following the proof of Proposition

2.2) F = χ 1
ζ2
and the solution g( ⋅ ; λ) of the equation

(3.29) (∆F − λ)g = (∆∗ − λ)F .
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hen G1/ζ2( ⋅ ; λ) = F − g( ⋅ , λ). Denoting by dot the derivative with respect to λ and
diòerentiating (3.29), one gets

−ġ = (∆F − λ)−1
G1/ζ2( ⋅ ; λ) and (∆F − λ)(−g̈) = 2(−ġ).

Now (3.6) gives
√

4π
d2

(dλ)2 S
1/ζ2 ,ζ(λ)∣

λ=0 = ⟨2(−ġ),G1/ζ( ⋅ ; λ)⟩

= 2⟨(∆F − λ)−1
G1/ζ2( ⋅ ; λ),G1/ζ( ⋅ ; λ)⟩ .

Since G1/ζ2( ⋅ , 0)�1, this implies

d2

(dλ)2 S
1/ζ2 ,ζ(λ)∣

λ=0
= 1√

π
∫
X
∫
X

G(x , y)G1/ζ2(x , 0)G1/ζ(y; 0)dS(y)dS(x),

where G(x , y) is the Green function from (2.3), and the special growing solutions
G1/ζ2( ⋅ , 0) and G1/ζ(y; 0) are explicitly computed in (2.16).

A Appendix

In this appendix, we sketch a proof of (2.4). An alternative proof (of a closely related
statement) based on diòerent technical tools can be found in [24].

Step 1. Weighted Sobolev estimate for the infinite cone Here, we closely follow
[25, Chapter 2], where a similar estimate was established for the Neumann bound-
ary value problem in an angle lying in Euclidean plane. he only modiûcation is the
use of (A.3) instead of the Green function from [25, (2.14)].

Let K be a standard round conewith conical point of conical angle 2πB, B = b+1 >
0. Let r > 0, ω (0 ≤ ω ≤ 2πB) be the standard polar coordinates on K. Introduce the
weighted Sobolev space Hs

β
(K) with norm

∥u;H l
γ(K)∥ = ( ∑

∣α∣<l

∫
K

r
2(γ−l+∣α∣)∣∂αxu(x)∣2dx)

1/2

,

which is equivalent to the norm

( ∑
j+k=l

∫
∞

0
∫

2πB

0
r
2(β+ j)−1∣∂ j

r∂
k
ωu(r,ω)∣2 dr dω)

1/2

,

where γ = β + l − 1.
Using theMellin transform

u(r,ω)z→ ũ(λ,ω) = 1√
2π ∫

∞

0
r
−i λ−1

u(r,ω) dr,

one passes from the problem

(A.1) −∆u = f
in K to the problem with parameter

(A.2) (−∂2
ω + λ

2)ũ = (r2 f )̃ ∶= F̃
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on the circle S1
2πB In what follows, we need an explicit expression for theGreen func-

tion of the problem (A.2). In order to obtain this expression we start with Green
function (integral kernel of the inverse operator)

Φ(∣x − y∣) = π

λ
e
−λ∣x−y∣

of the operator λ2 − (d/dx)2 on R1 (see, [31, vol. 1, (5.30), p. 220]). hen the Green
function of (A.2) is given by

∑
n∈Z

Φ(∣ω1 − ω2 + 2πBn∣).

Summing geometric sequences, one immediately gets the needed expression for the
Green function of (A.2),

(A.3) Γ(ω1 ,ω2; λ) =
π

λ

e−λ∣ω1−ω2 ∣ + eλ∣ω1−ω2 ∣e−2πB

1 − e−2πBλ
.

Notice that Γ has double pole at λ = 0 and simple poles at λ = ± k

B
, k = 1, 2, . . . .

Clearly, one has the estimate

∫
2πB

0
∫

2πB

0
∣Γ∣2dω1dω2 ≤ C∣λ∣−4

for λ ∈ R + iβ, where β is any real number not equal to ± k

B
, k = 0, 1, 2, . . . , and

therefore, one has an a priori estimate for (A.2),

(A.4) ∥ũ∥2 ≤ C∣λ∣−4∥F̃∥2 ,

with C independent of λ on the line R + iβ; β ≠ ± k

B
, k = 0, 1, 2, . . . . Using ∂k+2

ω ũ =
−λ2∂k

ωũ − ∂k
ω F̃, one upgrades (A.4) to

(A.5)
l+2

∑
j=0

∣λ∣2(l+2− j)∥∂ j
ωũ; L2(S1

2πB)∥2 ≤ C
l

∑
j=0

∣λ∣2(l− j)∥∂ j
ω F̃; L2(S1

2πB)∥2 .

on any horizontal line inC not passing through the poles of theGreen function (A.3)
(i.e., ± ki

B
, k = 0, 1, . . . ). Returning from theMellin images to the originals and using

estimate (A.5) together with Parseval equality, one derives the following proposition.

Proposition A.1 Let γ− l − 1 ≠ ± k

B
, k = 0, 1, 2, . . . , and f ∈ H l

γ(K). hen there exists

the unique solution u ∈ H l+2
γ (K) of problem (A.1). One has the estimate

∥u;H l+2
γ (K)∥ ≤ C∥ f ;H l

γ(K)∥.

Step 2. Asymptotics for functions fromD(∆) Let u ∈ C∞0 (X/{P}) and let χ be a
smooth cut oò function with a support in a small vicinity of P. One can assume that
K and X coincide in the latter vicinity. Choose a small positive δ such that δ − 1 ≠ k

B
;

k = 0, 1, 2, . . . . It should be noted that if B is not an integer (i.e., the conical angle is
not an integer multiple of 2π), one can take δ = 0. Using Proposition A.1, one gets

∥χu;H2
δ(K)∥ ≤ C∥∆(χu);H0

δ(K)∥ ≤ C∥∆(χu); L2(X)∥
≤ C(∥χ∆u; L2(X)∥ + ∥(∇χ)∇u; L2(X)∥ + ∥(∆χ)u; L2(X)∥) .
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Since the support of ∇χ is separated from P, one can estimate the second term on
the right-hand side from the above using the standard elliptic estimate (see, e.g., [4,
heorem 2.1 of Appendix 2]), thus arriving at

∥χu;H2
δ(K)∥ ≤ C(∥∆u; L2(X)∥ + ∥u; L2(X)∥) .

he latter inequality shows that the functions from D(∆) in a vicinity of P belong to
H2
δ
with (any small) positive δ. Now the standard Sobolev lemma gives

sup
1/2≤∣x ∣≤1

∣u(x)∣2 ≤ C ∑
∣α∣≤2
∫

1/2≤∣x ∣≤1
r
2(δ−2+∣α∣)∣∂αxu(x)∣2dx

with a constant C independent of u ∈ H2
δ
. hus,

∑
∣α∣≤2
∫
є/2≤∣x ∣≤є

r
2(δ−2+∣α∣)∣∂αxu(x)∣2dx

= є
2(δ−1) ∑

∣α∣≤2
∫

1/2≤∣x ∣≤1
r
2(δ−2+∣α∣)∣∂αxu(єx)∣2dx

≥ C−1
є
2(δ−1) sup

є/2≤∣x ∣≤є
∣u(x)∣2

and, therefore,
(A.6) u = O(r1−δ)
for u ∈ D(∆) near P. he latter estimate can be improved to u = O(r) in the case of
conical angles not equal to an integer multiple of 2π.

In particular, (A.6) implies that all the terms in the right-hand side of (2.4) (except
the last one) do not belong to D(∆).

Step 3. Domain of the adjoint operator Let u ∈D(∆∗). hen (see [28, §X.1])
u = u1 + u2 + u3 ,

with u1,2 ∈ Ker(∆∗± i) and u3 ∈D(∆). It suõces to ûnd the asymptotics of functions
from Ker(∆∗ + i). (he kernel of ∆∗ − i can be described in the same way.) So let
(∆∗ + i)v = 0. his guarantees that v ∈ L2(X) and v ∈ C∞(X/{P}) (due to the
standard theory of elliptic equations). To establish the asymptotic behavior of v at P,
one has to put v in someweighted Sobolev class. he following lemma (going back to
[17], §5.1) is actually the ûrst key point of the whole proof.

Lemma A.2 For some є > 0, one has the inequality

∫
{x∈X∶dist(x ,P)≤є}

r
4∣∇2

v∣2 + r
2∣∇v∣2dx ≤∞.

Proof Let χ be the same cut oò function as above and let v1 = χv. hen
(A.7) ∆v1 = −iv1 + f
in K, where f ∈ C∞0 (K/{P}). Let ϕ, κ ∈ C∞0 (K/{P}); ϕκ = κ, supp κ ⊂ {x ∶ 1/4 <
∣x∣ < 4}. he standard elliptic estimate gives

(A.8) ∥κv1;H2(K)∥ ≤ c(∥ϕ∆v1; L2(K)∥ + ∥ϕv1; L2(K)∥) .
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Choose a partition of unity {κ j} and functions ϕ j ∈ C∞0 (K/{P}) such that

supp κ j ⊂ {x ∶ 2 j−1 ≤ ∣x∣ ≤ 2 j+1},
supp ϕ j ⊂ {x ∶ 2 j−2 ≤ ∣x∣ ≤ 2 j+2},

κ jϕ j = κ j , and
∣Dακ j ∣ + ∣Dαϕ j ∣ ≤ Cα2− j∣α∣ .

Under the rescaling x ↦ 2 jx, the estimate (A.8) turns into

(A.9) ∑
∣α∣≤2

2 j(2∣α∣−4) ∫
K

∣Dαx (κ jv1)∣2 dx ≤

C( ∫
K

∣ϕ j∆v1∣2 dx + 2−4 j ∫
K

∣ϕ jv1∣2 dx) .

Taking into account (A.7), multiplying (A.9) by 24 j and summing through j = 0,−1,
−2, . . . , one gets Lemma A.2.

hus, the solution v1 of the problem
(A.10) ∆w + iw = f
on the cone K with f ∈ C∞0 (K/{P}) belongs to the weighted Sobolev class H2

2(K). It
is known (see, e.g., [21, Section 1.3.6] for a similar statement for a problem in an angle;
the needed modiûcations in the case of a cone K are obvious) that two solutions v1
and v2 of (A.10) from diòerentweighted Sobolev classes H2

β1
(K) andH2

β2
(K); β1 < β2

are related via
(A.11) χv1 = χ∑

k

Wk + χv2 ,

where χ is the usual cut oò function andWk , are those special solutions Wk(r,ω) =
ak(r)e i

k

B
ω of the homogeneous problem

∆w + iw = 0
on K that satisfy χWk ∈ H2

β1
and χWk ∉ H2

β2
(there is always a ûnite number of

such Wk). In fact, functions ak(r) can be expressed through Bessel functions. More
precisely, from (A.11) one gets the representation

(A.12) χv1 = χ
−1

∑
k=−[B]

K∣k/B∣(e
3πi

4 r)(ck e i
ωk

B + c′k e−i ωk

B ) + χc0K0(e
3πi

4 r)

+ χc′0I0(e
3πi

4 r) + χ
[B]

∑
k=1

I∣k/B∣(e
3πi

4 r)(ck e i
ωk

B + c′k e−i ωk

B ) + χv2

with v2 = O(r1+є) with є > 0. Using (A.12) and the series for Bessel functions [18,
(5.7.1), (5.7.2), (5.7.11)] (here is the second key point: the powers of r in the neighbour
terms of the series for Bessel functions diòer by two!), one arrives at the asymptotic
representation of v1 of the type (2.4)with the remainder R = O(r1+є),which is smooth
outside the vertex P (moreover, this asymptotic expansion can be diòerentiated). Let
ψ = 1 − χ; then it is straightforward to show that the sequence ∆[ψ(nx)R(x)] is
uniformly bounded in L2(X) as n →∞, and, therefore, R ∈D((∆∗)∗) =D(∆). ∎
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