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ON THE ISOMONODROMIC TAU-FUNCTION FOR THE
HURWITZ SPACES OF BRANCHED COVERINGS OF GENUS

ZERO AND ONE

Alexey Kokotov, Ian A. B. Strachan

Abstract. The isomonodromic tau-function for the Hurwitz spaces of branched
coverings of genus zero and one are constructed explicitly. Such spaces may be
equipped with the structure of a Frobenius manifold and this introduces a flat
coordinate system on the manifold. The isomonodromic tau-function, and in
particular the associated G-function, are rewritten in these coordinates and an
interpretation in terms of the caustics (where the multiplication is not semisimple)
is given.

1. Introduction

The equations which define the monodromy preserving deformations of the
Fuchsian system of differential equations

dΨ
dλ

+
M∑
k=1

Ak(λ1, . . . , λM )
λ− λk

Ψ = 0(1)

were derived by Schlesinger in 1912 and since then, particularly after the seminal
work of Jimbo and Miwa, they have been the source of inspiration for many
mathematicians; the equations having many beautiful analytic, algebraic and
geometric properties. Naturally associated to such a system is a closed 1-form
ω from which one may define a function τ via ω = d log τ . It is this function
that is the central object of study in this paper. Such τ -functions have appeared
in recent work on topics such as the computation of determinants of Laplace
operators on Riemann surfaces and the calculation of the asymptotic expansions
in the theory of random matrices [4].

The application of Schlesinger’s equations that will be considered in this pa-
per comes from the theory of Frobenius manifolds. These were introduced by
Dubrovin [1] as a geometric way to describe the associativity equations that arise
in topological quantum field theory (the so-called Witten-Dijkgraaf-Verlinde-
Verlinde equations). For semisimple Frobenius manifolds one may reformulate
the manifold’s defining relations as a reduction of Schlesinger’s equations. In
this specific context these reduced equations have two interesting properties:

• the appearance of non-Fuchsian singularities, ‘wild’ monodromies and
Stokes matrices;

Received by the editors February 27, 2004.

857



858 ALEXEY KOKOTOV, IAN A. B. STRACHAN

• the existence of an alternative, distinguished, coordinate system - the so-
called flat coordinates {ti} .

The associated τ -function for such systems will be written as τI and called
the isomonodromic τ function1. This function also plays a major role in the
formula, conjectured by Givental [7] and proved by Dubrovin and Zhang [2] for
the G-function of a semisimple Frobenius manifold

G = log
{

τI

J
1
24

}
(2)

where

J = det
(

∂(t1 , . . . , tn)
∂(λ1 , . . . , λn)

)
(3)

is the Jacobian of the tranformation between the flat coordinates {ti} and the
canonical coordinates {λi} . This function plays a number of roles in the theory
of Frobenius manifolds all related with the construction of first order (or genus
1) objects from zeroth order (or genus 0) data. For example, it appears in the
genus 1-term in the free energy of the related topological quantum field theory,
in the generating functions for genus 1-Gromov-Witten invariants, in first order
terms in the expansion of oscillatory integrals and in first order deformations of
biHamiltonian structures.

A particular class of Frobenius manifolds may be constructed on Hurwitz
spaces - moduli spaces of meromorphic functions on Riemann surfaces. (see [1]
and section 2). In this paper the τI and G-functions for genus 0 and 1 Hurwitz
spaces are studied. In section 2 these functions will be constructed in terms
of critical data on the Riemann surface. In section 3 the formulae will be re-
evaluated in terms of flat-coordinates, and this enables certain global properties
of these functions to be studied.

It will turn out that the non-semisimple part of the manifold plays a pivotal
role. By definition, a massive Frobenius manifold M has a semisimple multipli-
cation on the tangent space at generic points of M . The set of points where the
multiplication is not semisimple is known as the caustic, and will be denoted
K . This is an analytic hypersurface in M , which may consist of a number of
components (possibly highly singular),

K =
#Ki⋃
i=1

Ki .

This forms part of the bifurcation diagram B = {λ : λi − λj = 0 , i �= j} and in
general B ∼= K ∪M where M is the so-called Maxwell strata. The components
of the caustic are given in terms of quasi-homogeneous irreducible polynomials
κi such that κ−1

i (0) = Ki . For examples, using the ideas developed in [14] one

1A factor of −1/2 is missing in the definition of the closed form ω given in [2] ([12]). Here we
use the Dubrovin and Zhang formulae and hence the τI -functions that appear in this paper are

related to the ‘true’ τ -function by the formula τI = τ− 1
2 . This has the effect of interchanging

the zero and pole loci of the function.
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may show that the isomonodromic τ -function for the Frobenius manifold C
N/W

where W is a Coxeter group, is given by

τI =
#Ki∏
i=1

κ
− (Ni−2)2

16Ni
i

where the Ni are certain integers determining the F-manifold structure on the
caustics [8]. Such a formula determines certain global properties of the function,
such as its zeros and poles and its irreducibility properties. The case W = AN−1

(where #Ki = 1 and N1 = 3) coincides with the particular Hurwitz space
H0,N (N) .

2. The isomonodromic tau-function

In this section we give a short proof of the formulae for the isomonodromic
tau-function of semisimple Frobenius manifolds associated to the Hurwitz spaces
of branched coverings of genus 0 and 1. Closely related formulae for the isomon-
odromic tau-function of the class of Riemann-Hilbert problems solved in [11]
were first found in [9] without reference to any associated Frobenius manifold.
The connections between the formulae in [9] and Frobenius manifolds were con-
jectured in [14] and finally established in [10]. These formulae were proved
indirectly; the method was based on a detailed study of the behaviour of some
regularized Dirichlet integrals under deformations of the branched coverings.
The introduction of Dirichlet integrals was inspired by the paper [17] on acces-
sory parameters which appeared, at least superficially, to deal with a similar
question.

Such methods use auxiliary structures not directly connected with the holo-
morphic geometry of Hurwitz spaces. It was conjectured in [9] that such indirect
methods are inappropriate and can be replaced by a direct one which should use
only holomorphic geometry. Here we present such a proof.

2.1. Preliminaries.

2.1.1. Hurwitz spaces and Frobenius manifolds. Frobenius manifolds related to
Hurwitz spaces were introduced by Dubrovin (see [1], chapter 5). It will be
assumed that the reader is familiar with this construction. Here we recall some
basic facts and definitions in order to fix notation.

Let Hg,N (k1, . . . , kl) be the Hurwitz space2 of equivalence classes [p : L → P
1]

of N -fold branched coverings p : L → P
1, where L is a compact Riemann surface

of genus g and the holomorphic map p of degree N is subject to the following
conditions:

• it has M simple ramification points P1, . . . , PM ∈ L with distinct finite
images λ1, . . . , λM ∈ C ⊂ P

1;

2Dubrovin uses a slightly different notation. In his notation the Hurwitz space is
Hg;k1−1 ,... ,kl−1 .
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• the preimage p−1(∞) consists of l points: p−1(∞) = {∞1, . . . ,∞l}, and
the ramification index of the map p at the point ∞j is kj (1 ≤ kj ≤ N).

(We define the ramification index at a point as the number of sheets of the
covering which are glued together at this point. A point ∞j is a ramification
point if and only if kj > 1. A ramification point is simple if the corresponding
ramification index equals 2.) The Riemann-Hurwitz formula implies that the
dimension of this space is M = 2g + l + N − 2. One has also the equality
k1 + · · ·+ kl = N . Two branched coverings p1 : L1 → P

1 and p2 : L2 → P
1 are

said to be equivalent if there exists a biholomorphic map f : L1 → L2 such that
p2f = p1.

We also introduce the covering Ĥg,N (k1, . . . , kl) of the space Hg,N (k1, . . . , kl)
consisting of pairs

< [p : L → P
1] ∈ Hg,N (k1, . . . , kl), {aα, bα}gα=1 >,

where {aα, bα}gα=1 is a canonical basis of cycles on the Riemann surface L. The
spaces Ĥg,N (k1, . . . , kl) and Hg,N (k1, . . . , kl) are connected complex manifolds
and the local coordinates on these manifolds are given by the finite critical values
of the map p, namely λ1, . . . , λM . For g = 0 the spaces Ĥg,N (k1, . . . , kl) and
Hg,N (k1, . . . , kl) coincide.

Let φ be a primary differential (see [1]) on the Riemann surface L. With
this one may induce the structure of a semisimple Frobenius manifold Mφ on
Ĥg,N (k1, . . . , kl) by defining: the multiplication law on the tangent bundle ∂λm ◦
∂λn

= δmn∂λm
; the unity e =

∑M
m=1 ∂λm

; the Euler field E =
∑M
m=1 λm∂λm

and
the one-form Ωφ2 =

∑M
m=1{ResPm

(φ2/dλ)}dλm, where λ is the coordinate on
the Riemann surface L lifted from the base P

1.
The invariant metric ξ(v, w) = Ωφ2(v ◦ w) on the Frobenius manifold is

flat and potential. In the coordinates λ1, . . . , λM this metric is diagonal: ξ =∑M
m=1 ξmm(dλm)

2, ξmm = ResPm(φ2/dλ). The rotation coefficients, γmn (m �=
n), of this metric are defined by the equality

γmn =
∂λn

√
ξmm√

ξnn
.

Since the metric is flat there also exists a further distinguished coordinate system
known as the flat coordinates {ti} (defined up to linear transformations) in
which the components of the metric are constant. The Jacobian (3) of the
transformation between the flat and canonical coordinate systems is given by

J2 =
M∏
m=1

ξmm =
M∏
m=1

ResPm(φ2/dλ) .

2.1.2. The isomonodromic tau-function of a semisimple Frobenius manifold.
Let M be a semisimple Frobenius manifold with canonical coordinates λ1, ..., λM
and invariant metric ξ having rotation coefficients γmn. Let U = diag(λ1, ..., λM ),
Γ = ||γmn||m,n=1,...,M ;m�=n , and

V = [Γ,U ].
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The isomonodromic tau-function τI of the semisimple Frobenius manifold M is
defined by the system of (compatible) equations

∂ log τI
∂λm

= Hm, m = 1, . . . ,M,(4)

where the quadratic Hamiltonians Hm are defined by

Hm =
1
2

∑
n �=m;1≤n≤M

V 2
nm

λm − λn
, m = 1, . . . ,M.(5)

Remark 1. In case of the Frobenius manifoldMφ from section 2.1.1 the rotation
coefficients γmn and the quadratic Hamiltonians are independent of the primary
differential φ, i.e. are the same for all Frobenius structures on the Hurwitz space
Ĥg,N (k1, . . . , kl).

Remark 2. The matrices Ak that appear in isomonodromy problem (1) are
defined in terms of the Vmn by Ak = ||akmn||m,n=1,...M where akmn = 0 if m �= k
and akkn = Vkn for n = 1, . . .M .

Remark 3. The function τI is only defined up to an overall multiplicative con-
stant. Similarly the G function is only defined up to an overall additive constant.
Such numerical factors (and a multiplicative factor in J) will be ignored.

2.1.3. Quadratic Hamiltonians and Hurwitz spaces. If a semisimple Frobenius
manifold M is constructed by means of a Hurwitz space then the correspond-
ing quadratic Hamiltonians (5) admit an alternative expression first found in
[10]. To give this expression we need to introduce the so-called Bergman pro-
jective connection on the Riemann surface L and choose a special system of
local parameters on L connected with the covering p : L → P

1 from the space
Hg,N (k1, . . . , kl).

First recall the definition of the Bergman kernel. In the case g > 0 the
Bergman kernel on the Torelli marked Riemann surface L is defined byB(P,Q) =
dP dQ logE(P,Q), where E(P,Q) is the prime-form on L (see [5]). On the diag-
onal P = Q the Bergman kernel is singular:

B(x(P ), x(Q)) =
(

1
(x(P )− x(Q))2

+H(x(P ), x(Q)
)
dx(P ) dx(Q),(6)

where

H(x(P ), x(Q)) =
1
6
SB(x(P )) + o(1)(7)

as P → Q. Here x(P ) is a local coordinate of a point P ∈ L, SB is the Bergman
projective connection (see, e.g., [5],[15]). Being a projective conection, SB de-
pends on the choice of local parameter. If g = 0 and z : L → P

1 is a biholomor-
phic map then the Bergman kernel is defined by

B(z(P ), z(Q)) =
dz(P )dz(Q)

(z(P )− z(Q))2
.

(In particular SB(z) ≡ 0 in the local parameter z.)
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Let λ the standard local parameter on CP 1 \{∞}. This local parameter gives
rise to a local parameter λ(P ) (P ∈ L, λ(P ) = p(P ), where p : L → P

1 is the
covering map) on the Riemann surface L which is suitable everywhere except
in neighbourhoods of the ramification points P1, . . . , PM and at the infinities
∞1, . . . ,∞l. In the neighbourhood of the ramification point Pm one defines
the local parameter xm(P ) by the formula xm(P ) =

√
λ(P )− λm and in the

neighbourhood of the point ∞s one defines the local parameter ζs(P ) by the
formula ζs(P ) = (λ(P ))−1/ks .

The following theorem, proved in [10], relates the quadratic Hamiltonians to
the Bergman projective connection:

Theorem 1. Let Mφ be the Frobenius manifold constructed by means of a
Hurwitz space Hg,N (k1, . . . , kl) and a primary differential φ. Let the pair

< [p : L → P
1] ∈ Hg,N (k1, . . . , kl), {aα, bα}gα=1 >

(here {aα, bα}gα=1 is a canonical basis of cycles on the Riemann surface L) be a
point of Mφ. The quadratic Hamiltonians Hm are connected with the Bergman
projective connection on the Riemann surface L as follows

Hm =
1
24

SB(xm)
∣∣∣
xm=0

; m = 1, . . . ,M.(8)

Thus, the isomonodromic tau-function of the Hurwitz related Frobenius manifold
Mφ is subject to the system of equations

∂ log τI
∂λm

=
1
24

SB(xm)
∣∣∣
xm=0

; m = 1, . . . ,M.(9)

In the next section we integrate this system explicitly for spaces of branched
coverings of genus zero and one.

2.2. Calculation of τI .

2.2.1. Rauch variational formula. Let p : L → P
1 be an N -fold covering (or

more precisely, a representative of the class of equivalent coverings). Moving
the critical values λ1, . . . , λM of the map p, we deform the covering L. The be-
haviour of (normalized) holomorphic differentials on L under such a deformation
is described by the classical Rauch variational formula (see, e.g., [9] for the proof
of a more general result) which can be written as follows.

Let g ≥ 1 and let v be a holomorphic differential on L with fixed a-periods.
(Recall that we are considering deformations of our covering; this means, in par-
ticular, that v is a family of holomorphic differentials on Torelli marked Riemann
surfaces.) Then

∂v

∂λk
(y) =

1
2
B(y, xk)v(xk)(dxk)−2|xk=0.(10)

In the g = 0 case L is a rational surface and there exists a unique biholomorphic
map U : L → P

1 such that U(P ) = [λ(P )]1/k1 + o(1) as P → ∞1. (This
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asymptotic condition replaces fixing the a-periods of the differential in g ≥ 1
case.) Then

∂{dU}
∂λk

(y) =
1
2
B(y, xk)dU(xk)(dxk)−2|xk=0,(11)

where B(z1, z2) = dz1dz2
(z1−z2)2 , z1, z2 ∈ P

1 is the Bergman kernel on the Riemann
sphere. Let

b(Pk, Pl) = [B(xl, xk)dx−1
l dx−1

k ]
∣∣∣
xk=0,xl=0

, k �= l,

b(Pl,∞s) = [B(xl, ζs)dx−1
l dζ−1

s ]
∣∣∣
xl=0,ζs=0

.

The following lemma relates these functions to various derivatives. Ultimately
these will be used to integrate the system (9).

Lemma 1. Let dz = f(xk)dxk be a normalized holomorphic differential on the
elliptic surface L written in the local parameter near the point Pk and let

f(xk) = fk + fk,1xk + fk,2x
2
k +O(x3

k)

as xk → 0. The function h(ζs) is defined in a neighborhood of the point ∞s by
dz = h(ζs)dζs and let hs = h(ζs)|ζs=0.

With these definitions

∂fl
∂λk

=
1
2
b(Pk, Pl)fk , k �= l,(12)

∂hs
∂λk

=
1
2
b(Pk,∞s)fk,(13)

and
∂ log fk
∂λk

=
1
12

SB(xk)|xk=0 +
fk,2
2fk

.(14)

In the rational case equations (12), (13) and (14) hold with the function f(xk) de-
fined by dU(xk) = f(xk)dxk and the function h(ζs) defined by dU(ζs) = h(ζs)dζs.
If g = 0 the number hs is defined only for s > 1.

Proof. Equations (12) and (13) immediately follow from the Rauch formula.
To prove (14) observe that

f(xk)dxk =
(
fk + fk,1xk + fk,2x

2
k +O(x3

k)
) dλ

2
√
λ− λk

and

∂{f(xk)dxk}
∂λk

=
[
∂fk
∂λk

− fk,2
2

]
+

fk
2x2
k

+ o(1)(15)
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as xk → 0. On the other hand, owing to the Rauch formula and the asymtotics
of the Bergman kernel at the diagonal, one has

∂{f(xk)dxk}
∂λk

=
fk
2x2
k

+
fk
12

SB(xk) + o(1)(16)

as xk → 0. Comparing (15) and (16), one obtains (14).

2.2.2. The Main Theorem. Using the notation of Lemma 1 one may now write
down expressions for the isomonodromic tau-function for low genus Hurwitz
spaces.

Theorem 2. The isomonodromic tau-function corresponding to the Frobenius
structures on the space H0,N (k1, . . . , kl) is given by the expression

τI =

{ ∏M
m=1 fm∏l
s=2 h

ks+1
s

} 1
24

.(17)

The isomonodromic tau-function corresponding to the Frobenius structures on
the space H1,N (k1, . . . , kl) is given by the expression

τI =
1

η(ς)

{ ∏M
m=1 fm∏l
s=1 h

ks+1
s

} 1
24

,(18)

where ς is the modulus of the elliptic surface L, η is the Dedekind eta-function.

2.2.3. Proof of the main theorem. We recall some useful relations from [5].
(In agreement with the paper [6], we use here the normalization condition
(
∫
a
v,
∫
b
v) = (1, ς) for the normalized holomorphic differential v on the ellip-

tic surface L. In [5] the normalization (
∫
a
v,
∫
b
v) = (2πi, ς) was used and this

explains why the formulae here differ slightly from those in [5].)
Let L be a marked elliptic surface and let the b-period of the normalized

differential v be ς. Introduce the function η̃ by the equation

η̃(ς) =
d

dς
log η(ς),

where η is the Dedekind eta-function. Owing to the heat equation for theta-
functions we have

η̃(ς) =
1

12πi

θ′′′
[ 1

2
1
2

]
(0|ς)

θ′
[ 1

2
1
2

]
(0|ς)

.(19)

The Bergman kernel of the elliptic surface L is given by

B(x, y) =
[
℘(
∫ y
x

v)− 4πiη̃(ς)
]
v(x)v(y),(20)
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where ℘ is the Weierstrass ℘-function. Let z be the coordinate on the univer-
sal covering C of the elliptic surface L. For the invariant Wirtinger projective
connection SW (see [5]) we have

SW (x) = SB(x) + 24πiη̃v2(x) = {z, x},(21)

where {z, x} is the Schwarzian derivative (see also [15], the last example in
§1.3). Note that for a rational surface L the Bergman projective connection
coincides with the Wirtinger invariant projective connection and is nothing but
the Schwarzian derivative of the map U :

SW (x) = SB(x) = {U(x), x}.(22)

Proposition 1.

• Let g = 0. Define the function T0(λ1, . . . , λM ) by

T0(λ1, . . . , λM ) = log

{ ∏M
m=1 fm∏l
s=2 h

ks+1
s

}
.(23)

Then for any k = 1, . . . ,M

∂T0

∂λk
= SW (xk)|xk=0 = SB(xk)|xk=0 = {U(xk), xk}|xk=0.(24)

• Let g = 1. Define the function T1(λ1, . . . , λM ) by

T1(λ1, . . . , λM ) = log

{ ∏M
m=1 fm∏l
s=1 h

ks+1
s

}
.(25)

Then for any k = 1, . . . ,M

∂T1

∂λk
= SW (xk)|xk=0 = SB(xk)|xk=0 + 24πiη̃f2

k = {z, xk}|xk=0.(26)

Proof. Using Lemma 1 and formula (20) one obtains

∂λk
T1 =

1
2

∑
m�=k

b(Pm, Pk)fk
fm

+
1
12

SB(xk)
∣∣∣
xk=0

+
fk,2
2fk

− 1
2

l∑
s=1

(ks + 1)
b(Pk,∞s)fk

hs
,

=

1
2

∑
m�=k

℘(
∫ Pk

Pm

v)− 1
2

l∑
s=1

(ks + 1)℘(
∫ Pk

∞s

v)

 f2
k +

1
12

SB(xk)
∣∣∣
xk=0

+
fk,2
2fk

− 2πi(M − 1)η̃f2
k + 2πi

l∑
s=1

(ks + 1)η̃f2
k .
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Using (21), together with the Riemann-Hurwitz formula M = l +
∑l
s=1 ks, this

simplifies to

∂λk
T1 =

1
2

∑
m�=k

℘(
∫ Pk

Pm

v)−
l∑
s=1

(ks + 1)℘(
∫ Pk

∞s

v)

f2
k +

fk,2
2fk

+
1
12

SW (xk)|xk=0.

(27)

The analogous formula in the g = 0 case is

∂λk
T0 =

1
2

∑
m�=k

1
(zk − zm)2

−
l∑
s=2

ks + 1
(zk − ys)2

 f2
k +

fk,2
2fk

+
1
12

SW (xk)|xk=0.

(28)

where zm = U(Pm);m = 1, . . . ,M and ys = U(∞s); s = 2, . . . , l.
In the g = 0 case let R : P

1 → P
1 be the composition p ◦ U−1 (we recall that

p : L → P
1 is the chosen covering from the Hurwitz space). Then R is a rational

function and the expression in large braces in (28) coincides with[
− d

dz

(
R′′(z)
R′(z)

)
− 1

(z − zk)2

] ∣∣∣∣∣
z=zk

,(29)

Similarly, in the g = 1 case let ∆ be a fundamental parallelogram on the universal
covering C of the elliptic surface L and let U−1 : ∆ → L be the uniformization
map. Let R = p ◦ U−1. Then R is an elliptic function and the expression in
large braces in (27) coincides with[

− d

dz

(R′′(z)
R′(z)

)
− ℘(

∫ z
zk

dz)
] ∣∣∣∣∣
z=zk

.(30)

Here we are denoting the standard local parameters on P
1 and ∆ by z and, in

the last equation, zk ∈ ∆, U−1(zk) = Pk.
From now on the proofs of (24) and (26) coincide verbatim and only the

details of the rational case will be presented. Let x = z− zk and define α , β and
γ by the condition that

R′(z) = αx+ βx2 + γx3 +O(x4)(31)

as z → zk. It then follows that(
dz

dxk

)2

=
4(R(z)−R(zk))

[R′(z)]2
=

2
α
− 8

3
β

α2
x+

(
10
3

β2

α3
− 3

γ

α2

)
x2 +O(x3)(32)

and, in particular, that

f2
k =

2
α
.(33)

Similarly,

fk,2
2fk

= lim
xk→0

z′′(xk)− z′′(0)
4(z(xk)− z(0))

=
5
6
β2

α3
− 3

4
γ

α2
.(34)
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Using the expansion (31) it is straightforward to show that

(35)
2γα− β2

α2
=
[
d

dz

(
R′′(z)
R′(z)

)
+

1
(z − zk)2

] ∣∣∣∣∣
z=zk

=

[
{R(z), z}+ 1

2

(
R′′(z)
R′(z)

)2

+
1

(z − zk)2

] ∣∣∣∣∣
z=zk

.

On using the transformation property of the Schwarzian derivative, together
with equations (33) and (32), one obtains

4γα− 2β2

α3

=

[
{R(z), z}

(
dz

dxk

)2

+

(
1
2

(
R′′(z)
R′(z)

)2

+
1

(z − zk)2

)(
dz

dxk

)2
] ∣∣∣∣∣
z=zk

=

[
{R(z), xk} − {z, xk}+

(
1
2

(
R′′(z)
R′(z)

)2

+
1

(z − zk)2

)(
dz

dxk

)2
] ∣∣∣∣∣
z=zk

=
γ

α2
− {z, xk}

∣∣∣
xk=0

,

so

{z, xk}
∣∣∣
xk=0

=
2β2 − 3αγ

α3
.(36)

Finally, substituting into (28) the expressions (35), (34) and (36), we get

∂λk
T0 =

1
12

(
2β2 − 3αγ

α3

)
− 3

4
αγ

α3
+

5
6
β2

α3
+

β2 − 2γα
α3

=
2β2 − 3αγ

α3

= {z, xk}
∣∣∣
xk=0

.

Theorem 2 immediately follows from equations (9), proposition 1 and the Rauch
formula

∂ς

∂λk
= πif2

k ,

a proof of which can be found in [9].

3. The space of branched coverings of genus 0

As commented on earlier, Hurwitz spaces H0,N (k1 . . . , kl) are particularly
simple: firstly the spaces Ĥg,N and Hg,N coincide and secondly the maps p :
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P
1 → P

1 are just rational functions. Such a rational map may, in a suitable
coordinate system, be taken to be3

p(z) = zk1 +
k1−2∑
r=0

arz
r −

l∑
i=2

ki∑
αi=1

c(i,αi)

(z − bi)αi ,

and in order for p to be well defined the poles bi must be distinct and the
coefficients c(i,ki)at the end of the various Laurent tails must be non-zero. Thus

H0,N (k1 , . . . , kl) ∼= C
M\{bi − bj = 0 , i �= j} ∪ {c(i,ki) = 0} .

The main additional object is a choice of a primary differential. Here this may
be taken to be φ = dz . With this the flat coordinates

{t(i,αi) : i = 1 , . . . , l , αi = 2 , . . . , ki} ∪ {pi , qi : i = 2 , . . . , l}
are given by Theorem 5.1 of [1]. For future notational convenience we define
ti = t(i,ki) .With the above formulae for p and φ one may evaluate these formulae,
obtaining, in particular

pi = bi ,
ti = ki c(i,ki)

1/ki

}
i = 2 , . . . , l ,

so

H0,N (k1 , . . . , kl) ∼= C
M\S1 ∪ S2

where

S1
∼= {pi − pj = 0 , i �= j} ,

S2
∼= {ti = 0 , i = 2 . . . , l} .

3.1. The G-function in flat coordinates. Theorem 2 together with (2) en-
ables the G-function to be calculated explicitly in flat-coordinates. Owing to
some cancellations it turns out to be easier to calculate the G-function than
the τI -function. A separate calculation of the Jacobian J then enables the τI -
function to be found.

Theorem 3. The G-function for the Hurwitz space H0,N (k1 , . . . , kl) is given
by

G = − 1
24

l∑
i=2

(ki + 1) log ti .(37)

The scaling anomaly γ = LEG is given by

γ = − 1
24

(
l − 2 +

l∑
i=1

ki
−1 + k1

−1M

)
.

3In this formula for p , and in various formulae to come, slightly different forms are required
if k1 = 1 , or in some, if ki = 1 . The final results, though, are not sensitive to this, so only the
generic calculations will be presented here.



ON THE ISOMONODROMIC TAU-FUNCTION FOR HURWITZ SPACES 869

Proof The proof is really only an extension of the examples in [10] coupled with
the flat-coordinate calculation given above. The formula for the G-function is:

G =
1
24

log


∏M
r=1

dz
dxr

∣∣∣
xr=0∏l

s=2

(
dz
dξs

)ks+1
(∏M

r=1 resPr

φ2

dλ

) 1
2

 .

Since

p =
c(i,ki) +O(z − bi)

(z − bi)ki

and p = ξ−ki around bi one may obtain

dz

dξi

∣∣∣∣
ξi=0

= c
k−1

i

(i,ki)
.

Also

res
Pm

φ2

dλ
=

1
2M

dz

dxm

∣∣∣∣
xm=0

,

so the terms which are hard to compute in the numerator and denominator
cancel, leaving only a products which have already been evaluated. Hence

G = − 1
24

l∑
m=2

(
ki + 1
ki

)
log c(i,ki) .

Expressing this in flat coordinates yields the final result. Note that G is non-
singular at all points in H0,N (k1 . . . kl) ; the singularities occurring only on the
component S2 of the boundary of the Hurwitz space.

The Hurwitz space H0,N (N) is isomorphic to the orbit space C
N−1/AN−1 ,

and in this case one obtains G = 0 . The Hurwitz space H0,N (k,N − k) is iso-
morphic to the orbit space C

N/W̃ (k)(AN−1) , where W̃ (k)(AN−1) is an extended
affine Weyl group [3], and in this case one obtains the formulae derived in [14],
though in a slightly different form due to a different primary differential having
being used there. Such a change in the primary differential induces a symme-
try in the corresponding Frobenius manifolds and this in turn induces a simple
transformation for the G-function (see Lemma 9 in [14]).

3.2. The τI-function in flat coordinates. For p(z) given above, its derivative
may be written uniquely as

p′(z) =
f(z)
g(z)

(38)
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where

g(z) =
l∏
i=2

(z − bi)ki+1 .

The canonical coordinates are given in terms of the zeroes of p′ ,

p′(αi) = 0
p(αi) = λi

}
i = 1 , . . .M .

By calculating the resultant of f and g one can see that they have no common
roots on H0,N (k1 , . . . , kl) and so the zeroes of p′ are precisely the roots of the
polynomial f .

Lemma 2. The resultant R(f, g) of the polynomials f and g defined by (38) is
given by

R(f, g) =

∏
i �=j

(pi − pj)(ki+1)(kj+1)


{
m∏
i=1

t
ki(ki+1)
i

}

where {pi, ti} are flat coordinates for the metric ξ .

Proof Writing f as

f(z) = k1

M∏
i=1

(z − αi)

gives

R(f, g) =
M∏
i=1

l∏
j=2

(αi − pi)ki+1 .

But from differentiating the expansion of p ,

c(i,ki) =

∏M
j=1(p

i − αj)∏
i �=j(pi − pj)kj+1

Using the expression of c(i,ki) in terms of flat coordinates completes the proof.

Note that R(f, g) is a non-zero function on H0,N (k1 . . . kl) : it vanishes precisely
on boundary S1∪S2 . The values of p′′(αi) , or rather the product of these values,
are now easily calculated using basic properties of the resultant:

p′′(αi) =
f ′(αi)
g(αi)

,

and hence
M∏
i=1

p′′(αi) =
∏M
i=1 f

′(αi)∏M
i=1 g(αi)

=
R(f, f ′)
R(f, g)

.
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This then gives the Jacobian J . Finally, putting equation (2), Theorem 2 and
Lemma 3 together gives:

Theorem 4. The isomonodromic τ -function for the space H0,N (k1 , . . . , kl) is
given by the formula

τ−48
I =

R(f, f ′){∏
i �=j(pi − pj)(ki+1)(kj+1)

} {∏l
i=2 t

(ki+1)(ki−2)
i

} .

This formula shows a number of different things. Firstly, τ−48
I is the ratio of

quasi-homogeneous polynomials. Moreover the denominator is non-zero at all
points in H0,N (k1 . . . kl) , vanishing only on the boundary S1 ∪ S2 . Hence the
zero locus

{t ∈ M : τ−48
I = 0} = {R(f, f ′) = 0} = K

that is, the classical caustic where two or more of the αi are coincide. Thus
τ−48
I is non-zero on M\K and zero only on K . Such a caustic is stratified by
the multiplicities of the roots of f(z) = 0 .

The quasihomogeneous polynomial R(f, f ′) is not irreducible:

Proposition 2. The resulatnt R(f, f ′) factorizes:

R(f, f ′) =

 ∏
{i :ki=1}

ti

 ·
{∏
r<s

(pr − ps)mrs

}
· R̃(f, f ′) ,

where R̃(f, f ′) is a quasihomogeneous polynomial.

Proof To derive this we use the property of the resultant that there exists
functions α(z) and β(z) (which here will be quasihomogeneous polynomials)
such that

R(f, f ′) = α(z)f(z) + β(z)f ′(z) .

The function f is explicitly

f(z) =
l∏
i=2

(z − bi)ki+1 ·
{
k1z

k1−1 + . . .+
l∑
i=2

ki∑
αi=1

αic(i,αi)

(z − bi)αi+1

}

and this may be used to calculate f(bi) and f ′(bi) . For example

f(bi) = ti
∏
r �=i

(bi − br)kr+1

and a similar calculation show that f ′(bi) has a factor ti if and only if ki = 1 .
Hence R has a factor of ti if and only if ki = 1 . A similar argument gives the
second factor in the above formula with mrs = (kr + ks) .
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The mrs factor is not optimal, as may be shown by calculating certain examples.
It seem likely, based on the explicit calculation of low dimensional examples, that
with an optimal factor, the residual polynomial R̃(f, f ′) is irreducible.

4. The space of branched coverings of genus 1

Elliptic functions may easily be manipulated in the same way as rational
functions. Here the definitions and properties of these and related functions will
follow [16]. Any elliptic function may be written as

p(z) = a+
l∑
i=1

ki∑
αi=1

c(i,αi)ζ
(αi−1)(z − bi)

with the local expansion around the pole z = bi ,

ci,1
z − bi

− c(i,2)

(z − bi)2
+ . . .+

(ki − 1)!(−1)ki−1c(i,ki)

(z − bi)ki
.

In order for this to be well-defined, the poles must be distinct with well-defined
orders, so singular spaces S1 and S2 may be defined as above. Such an elliptic
function admits an alternative representation in terms of products of σ-functions,

p(z) = a0

∏N
i=1 σ(z − ai)∏l
j=1 σ(z − bj)kj

with
∑N
i=1 ai =

∑l
j=1 kjbj . To proceed further one requires an elliptic version

of the resultant of two polynomials. This may be defined as follows. Let

F (z) = a0

M∏
i=1

σ(z − ai) , G(z) = b0

N∏
j=1

σ(z − bj) ,

and define R(F,G) = aN0
∏M
i=1 G(ai) . It follows immediately from this that

R(F,G) = aN0 bM0
∏
i,j

σ(ai − bj) = (−1)MN
N∏
j=1

F (bj) = (−1)MNR(G,F ) .

In particular, R(F,G) = 0 if and only if F and G have, modulo the lattice, a
common zero, this following from properties of the σ-function. For arbitrary F
and G of this form, the elliptic resultant R(F,G) does not transform invariantly
under the lattice transformations ai �→ ai+2mω1+2nω2 , bi �→ bi+2mω1+2nω2 .
However, if F/G is an elliptic function then the elliptic resultant transforms as

R(F,G) �→ cL(m,n)R(F,G)

where cL(m,n) is a non-zero function, depending on the periods.

The G-function and τI -function for the space H1,N (k1, . . . , kl) may now be
calculated in manner entirely analogous to Theorem 3 and 4.
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Theorem 5. The G-function for the Hurwitz space H1,N (k1 , . . . , kl) is given
by

G = − log η(t0)− 1
24

l∑
i=2

(ki + 1) log ti .(39)

The scaling anomaly γ = LEG is given by

γ = − 1
24

(
l +

l∑
i=1

ki
−1 + k1

−1M

)
.

Proof The proof is, again, really only an extension of the example in [10], so(
M∏
m=1

ResPm

φ2

dλ

)
= const

(
M∏
m=1

ω(xm(P ))
dxm(P )

∣∣∣∣∣
P=Pm

)2

=

(
M∏
m=1

fm

)2

,

and the flat coordinate calculations

t0 =
∮
b

ω = ς

and

ti = t(i,αi) = Resz=0(z[λ(z)]
− ki−1

ki dλ(z))

= Resζi=0

(
z(ζi)

dζi
ζ2
i

)
= z′(ζi)|ζi=0 = hi ,

= const c(i,ki)
1/ki .

In particular, for the space H1,N (N) one obtain the G-function conjectured in
[14] and proved in [10] (N.B. a log-term went missing in [10] and a different
normalization was used [14] which accounts for the different numerical factor in
front of the first term in the G-function above).

Since p′(z) is also an elliptic function it may be written as p′ = f/g where
f and g are products of σ-functions. The proof of Theorem 4 goes through
verbatim with the elliptic resultant introduced above. In particular, the function
R(f, g) can be calculated in exactly the same way as above.

Theorem 6. The isomonodromic τ -function for the space H1,N (k1 , . . . , kl) is
given by the formula

τ−48
I =

η(t0)48 κ{∏
i �=j(bi − bj)(ki+1)(kj+1)

} {∏l
i=1 t

(ki+1)(ki−2)
i

}
where

κ =
∏
r �=s

σ(αr − αs)

and αi , i = 1 , . . . ,M , are the critical points of the map p .
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The submanifold κ−1(0) corresponds to the caustic K where the multiplication
is non-semisimple.

Example The Hurwitz space H1,2(2) was studied in detail in [1], appendix C.
Detailed calculations give

τ−48
I = t121 ∆̂3(t0)

where ∆̂(ω′/ω) = ω12∆(ω, ω′) and ∆ is the classical discriminant of the un-
derlying elliptic curve with periods ω and ω′ , i.e., given an elliptic curve y2 =
4x3 − g2(ω, ω′)x− g3(ω, ω′) the discriminant is defined by ∆ = g3

2 − 27g2
3 . This

shows that τI is singular where ∆ = 0 , that is, where the underlying ellip-
tic curves develops a singularity. Such points are not strictly speaking in the
Hurwitz space - they occur on its boundary.

5. Comments

While for any individual Frobenius manifold one may find the corresponding
G-function by directly solving the defining differential equation, calculating it
explicitly for classes of Frobenius manifolds is more problematic. For orbit spaces
C
M/W where W is a Coxeter group, the G-function was calculated by studying

the F -manifold structure on the caustics. Such an approach could be applied to
other classes of manifolds, such as the Hurwitz spaces in this paper, but this is
hampered by the lack of information on the F -manifold structure on the caustics.
The formulae (37,39) suggest that one has a number of logarithmic caustics Klog

and that the multiplication on them is of the type given in Lemma 2.3 in [14]
with Nlog = (ki+1) , but to verify this would require much detailed calculation.
The methods used here are very specific to Hurwitz spaces. However certain
structures appear in both approaches, namely the role of caustics and singular
structures (which include the logarithmic caustics introduced in [14]) on the
boundary of the Hurwitz spaces. Certainly the results suggest that a detailed
study of the caustics and boundaries of Hurwitz spaces should be undertaken.
The techniques of this paper could also be applied to the ‘real-double’ Hurwitz
spaces recently introduced by Shramchenko [13].

More generally, both constructions have a considerable global character: the
results are all obtained in terms of critical data. This suggests that there might
be formulae for the G and τI functions in terms of the Saito formalism of Frobe-
nius manifolds.
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