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 A new hierarchy of integrable systems
 associated to Hurwitz spaces

 By A. Kokotov* and D. Korotkin

 Department of Mathematics and Statistics, Concordia University,
 7141 Sherbrooke West, Montreal, Quebec, Canada HJ^B 1R6

 In this paper, we introduce a new class of integrable systems, naturally associated to Hurwitz
 spaces (spaces of meromorphic functions over Riemann surfaces). The critical values of the

 meromorphic functions play the role of 'times'. Our systems give a natural generalization of
 the Ernst equation; in genus zero, they realize the scheme of deformation of integrable systems
 proposed by Burtsev, Mikhailov and Zakharov. We show that any solution of these systems in
 rank 1 defines a flat diagonal metric (Darboux-Egoroff metric) together with a class of
 corresponding systems of hydrodynamic type and their solutions.

 Keywords: deformations of integrable systems; Hurwitz spaces; Ernst equation;
 systems of hydrodynamic type

 1. Introduction

 Deformations of Riemann surfaces play an important role in different branches of
 the theory of integrable systems. Implicit deformations of Riemann surfaces
 appear in the systems of hydrodynamic type and in Whitham deformations of
 integrable systems (Krichever 1989a,b; Dubrovin 1992). Explicit deformations of

 Riemann surfaces appear in algebro-geometric solutions of equations with
 variable spectral parameter (Korotkin 1989) and Frobenius manifolds (Dubrovin
 1996, 1998).

 The main representative of the class of systems with variable spectral
 parameter is the Ernst equation from general relativity, which has the form

 ((?- DGjG-1)? + ((?- f)Gf G~% = 0,

 where G(f,f) is a matrix-valued function. The stationary axially symmetric
 Einstein equations are equivalent to this equation if G is a 2 X 2 matrix with some
 additional symmetries. The Ernst equation is the compatibility condition of the
 following linear system (Belinskii & Zakharov 1978; Maison 1978)

 dW GcG~l dW G,G~l , x
 d? 1 ? v d% 1 + v v

 * Author for correspondence (alexey@mathstat.concordia.ca).
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 1056 A. Kokotov and D. Korotkin

 where v is the following function of spectral parameter A E C and variables (?, f):

 Function *>(A) is nothing but the uniformization map of the genus zero Riemann
 surface which is the twofold covering of A-plane with two branch points at A = ?
 and A = ?. The map Uy) is a rational map CP1 ?> CP1 of degree two with critical
 values ? and ?.

 If the matrix dimension of G is 1, we can introduce the function /= ln G and
 the Ernst equation turns into the Euler-Darboux equation,

 d2f 1 df 1 df ?L= -\-=_ -j-=_4 = 0 19
 dm 2(f-o a? 2(5-f)d? ' ^ ;

 The natural question is whether the Ernst equation is an isolated example of an
 integrable system related to the space of rational maps or it is possible to define
 natural analogues of the Ernst equation which would correspond to spaces of
 rational maps of arbitrary degree. More general, is it possible to go beyond the
 spaces of rational maps, and define natural analogues of the Ernst equation
 corresponding to general Hurwitz spaces 77^ of meromorphic functions of degree
 N on Riemann surfaces of genus gl Is there any link between these higher
 analogues of Ernst equation and existing theories of systems of hydrodynamic
 type (Krichever 1989a,6; Dubrovin 1992), Frobenius manifolds and Darboux
 Egoroff metrics corresponding to Hurwitz spaces (Dubrovin 1996)?

 Ifwe assume that v in (1.1) is a constant, then the compatibility conditions of
 (1.1) leads to the equation of the principal chiral model; therefore, according to
 terminology proposed by Burtsev et al. (1987), it is natural to call the Ernst
 equation the 'deformation' of the principal chiral model equation. Burtsev et al.
 (1987) studied the general problem of deformation of a given integrable system
 which has U-V pair, where matrices U and V are meromorphic functions of
 constant spectral parameter v. If one allows v to depend on space variables (x, y),
 then the zero curvature condition Uy? Vx+ [U, V] = 0 implies a set of
 differential equations for 'variable spectral parameter' v and poles of matrices
 {/and V. However, in Burtsev et al (1987), no regular method was given to solve
 these differential equations.
 The first goal of this paper is to fill this gap. Namely, we show that the

 deformation scheme of Burtsev et al. (1987) can be realized in terms of the spaces
 of rational maps H0N of any given degree N. In this way, we get a new hierarchy
 of non-autonomous nonlinear integrable systems. We show how solutions of the
 new systems can be described in terms of matrix Riemann-Hilbert problem and
 isomonodromic deformations. If the matrix dimension equals 1, these nonlinear
 systems give rise to systems of linear non-autonomous second-order partial
 differential equations, generalizing the Euler-Darboux equation.

 Second, we extend our framework to construct a class of new integrable systems
 starting from an arbitrary Hurwitz space HgN (space of meromorphic functions of
 degree AT on Riemann surfaces of genus g) for g>2.

 Third, in rank 1 (by rank of the integrable system we mean its matrix
 dimension) and any genus, we observe a very close relationship between our
 systems, Darboux-Egoroff metrics, systems of hydrodynamic type and Frobenius

 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1057

 manifolds. Moreover, our general formalism allows to give a simple description of
 systems of hydrodynamic type (as well as their solutions) associated to Hurwitz
 spaces HgN.

 Let us describe our results in more details. Each rational map R(y) of degree N
 defines an TV-fold branch covering C of CP1; a point Pof C is a pair (X, y) such that

 X = R(y). (1.3)
 We assume that R(y) maps the infinity in y-plane to the infinity in A-plane and
 R(y) ? X + o(l) as y ? 00; then function R(y) has the form

 m=l ' ^m

 Denote the critical points of the map R by y 1,..., yM', we shall assume that all of them
 are simple; then M=2N?2 according to the Riemann-Hurwitz formula.

 The ramification points of the covering C are denoted by Pm = (Xm, ym) (they
 are simple since all critical points of R(y) are simple); their projections Xm on
 A-plane are called the branch points of the covering C (we adopt the terminology
 of Fulton 1969); these are the values of the rational map R(y) at its critical
 points Xm= R(ym). In the sequel, we shall assume that all Xm are different.

 Introduce two functions on the covering C: the function n, which projects C on
 A-plane, rr(P) = X; and function v, which projects C to y-plane, v(P) = y. The
 map v : C ? CP1 is a one-to-one map; its inverse is nothing but a uniformization
 map of the covering C. The maps v and tv are related as follows: R(v(P)) = rc(P).

 Owing to our assumption about the behaviour of R(y) at infinity, in a
 neighbourhood of the infinite point on some (we shall call it the first) sheet of C,
 the map v(P) behaves as follows: v(P) = X+ o(l).
 The structure of Riemann surface on the branch covering C is defined as

 follows: in a neighbourhood of any point where C is non-ramified, we can consider
 X as local parameter. In a neighbourhood of a ramification point Pm, the local
 coordinate is chosen to be xm = y/X? Xm.

 The branch covering C is completely defined by the branch points Xm and a
 representation of the fundamental group 7r1(CP1\{A1,...,XM}) in permutation
 group Sn. An element of the permutation group describes the permutation of
 sheets of the covering C ii X encircles a given contour in CP1\{A1,...,XM}. We
 shall consider local deformations of the covering C, such that this representation
 is kept fixed. Then the branch points Xm can be considered as natural local
 coordinates on the space of rational maps; they will play the role of independent
 variables of our systems.

 Let us fix some point P0 of C, such that its projection on the A-plane X0 = 7r(P0) is
 independent of all {Xm}; let y0 = v(P$). Consider the following system of matrix
 linear differential equations for an auxiliary matrix-valued rX r function W(X, {Xm}):

 dXm n(P) v{P)-ym Jm*' {l'b)

 where the derivatives are taken assuming that X = tt(P) remains constant. We assume
 that the solution W of (1.5) is normalized by the condition

 W(X = 00) = J. (1.6)

 Phil. Trans. R. Soc. A (2008)
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 1058 A. Kokotov and D. Korotkin

 Ifwe put in (1.5) P= P0, then the compatibility conditions of the system (1.5) imply
 that all Jm are logarithmic derivatives of a matrix-valued function G({Xm}):
 Jm ? GxmG~l. Besides that, the compatibility conditions of the system (1.5) imply
 the following coupled system of non-autonomous nonlinear matrix partial differential
 equations of second order:

 ((To- lm)G,mG-l)K - ((To- yn)GxG-1)^ (1.7)
 for all m, n = 1,..., M. We call the matrix dimension r of the matrix Gthe rank of the
 system (1.7).

 For rational maps of degree two, the system (1.7) coincides with the ordinary
 Ernst equation (1.1). If the rank equals 1, the systems (1.7) give rise to certain
 generalization of the Euler-Darboux equation (1.2).

 We define the tau-function of these systems by the following system of
 compatible equations

 d ! 1 I ((dpWW1)2} , o,

 where dPW= (dW/dv(P))dv(P); these equations fix r up to an arbitrary constant
 multiplier if we assume that r is a holomorphic function of {Am}.

 Each system (1.7) possesses a subclass of 'isomonodromic' solutions which can
 be built from an arbitrary solution of the Schlesinger system in the same matrix
 dimension. For the isomonodromic sector, we relate the tau-function to the
 Jimbo-Miwa tau-function of the Schlesinger system. This link between two tau
 functions generalizes the formula (found in Korotkin &; Nicolai 1996) relating the
 so-called 'conformal factor' of the Ernst equation with the Jimbo-Miwa tau
 function. We also show how to construct solutions of the systems (1.7) from
 solutions of matrix Riemann-Hilbert problems on CP1.
 After developing the theory of the systems (1.7), associated to the spaces

 of rational maps H0N, we formulate a similar for Hurwitz spaces in arbitrary
 genus HgN.

 Consider in detail the rank 1 case. Let the AT-fold branched covering C have genus g\
 then the number of branch points is equal to M = 2g + 2N ? 2 (as before, we assume
 that all the branch points are simple and have different projections on A-plane).
 Again, the projections Am of the branch points Pm on A-plane can be used as local
 coordinates on HgN. Let us introduce some basis of canonical cycles on C. Denote by
 E(P, Q) the prime form on C, and by Bm the normalized (all a-periods vanish)
 Abelian differential of the second kind with the unique pole of second order at Pm
 with leading coefficient 1. Let us choose two arbitrary points P0 and Qq on C, such
 that their projections tt(Pq) and tt(Qq) on the A-plane are {Am} independent. Then
 the g>0 analogue of the genus zero systems (1.7) in rank 1 looks as follows:

 dXmdXn 2 [vm dXm vn dAn)
 where

 up p)_____M__|
 ?(rm^n) dxm(P)dxn(Q)\P=Pm,Q=P:

 and B(P, Q) = dpdg ln E(P, Q) is the canonical meromorphic bidifferential;

 Vm? \q0 Bm'

 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1059

 Solutions of the system (1.9) can be constructed as follows. Let / be an
 arbitrary closed contour on C such that its projection on the A-plane n(l) is
 independent of {Xm} and Pm & I for any m. Let h(P) be an arbitrary independent
 of {Xm} Holder-continuous function on /. Then the function

 satisfies the system (1.9).
 Any solution of the system (1.9) gives rise to a diagonal flat metric (Darboux

 Egoroff metrics). Namely, consider the diagonal metric
 M

 ds2 = Y^dmmd^L (1-11) m?l

 where gmm ? dlnr/dXm and r({Xm}) is the tau-function corresponding to an
 arbitrary solution of (1.9). The rotation coefficients of this metric turn out to be
 given by the canonical meromorphic bidifferential

 $mn=\b(Pm,Pn), (1.12)
 i.e. they depend only on the covering C and do not depend on a particular
 solution of (1.9). In accordance with the Rauch variational formulae (Fay 1992),

 which describe dependence of the canonical meromorphic bidifferential on the
 branch points, these coefficients satisfy the equations

 *\-| fJmltJln')

 for distinct /, m, n, which, together with annihilation of each /3mn by the operator
 Y^A=i d/dAfc, guarantee flatness of the metric (1.11).

 The Darboux-Egoroff metrics are known to be closely related to integrable
 classes of systems of hydrodynamic type, including, in particular, Whitham
 equations for slow deformations of the Riemann surfaces in dispersionless limit of
 finite-gap solutions of integrable systems. These systems are solvable via
 so-called generalized hodograph method (Krichever 1989a,b; Tsarev 1990). Our
 present scheme gives a short and simple formulation of the theory of the systems
 of hydrodynamic type corresponding to Hurwitz spaces.

 The paper is organized as follows. In ?2, we derive an auxiliary system of
 differential equations which describe dependence of the critical points of the rational
 map of the form (1.4) on the critical values. Then we show integrability of the
 systems (1.7), define the corresponding tau-function and discuss the relationship of
 these systems to the Riemann-Hilbert problem and the Schlesinger system. Here,
 we also show how the systems (1.7) are related to deformations of integrable systems
 proposed by Burtzev et al (1987). In ?3, we define analogues of the systems (1.7)
 related to Hurwitz spaces HgN in arbitrary genus g > 2 and discuss their properties.
 In ?4, we show that each solution of these systems in rank 1 defines a Darboux
 Egoroff metric, and discuss related systems of hydrodynamic type in our frame
 work, together with their solutions. Here, we also outline the link between higher
 genus analogues of systems (1.7) and isomonodromic deformations on algebraic
 curves. In ?5, we discuss potential directions of future work.

 Phil. Trans. R. Soc. A (2008)

This content downloaded from 132.205.204.75 on Sat, 07 May 2022 15:14:56 UTC
All use subject to https://about.jstor.org/terms



 1060 A. Kokotov and D. Korotkin

 2. Non-autonomous integrable systems related to spaces of rational maps

 (a) Differential equations for critical points of rational maps

 Consider a rational map R(y) of degree AT of the form (1.4). Ifwe choose the critical
 values Xi,..., Aj^ of the map (1.4) as independent parameters, each critical point ym
 becomes a function of all {Am}. The function v(P) depends on the variables Ax,..., XM
 as parameters. In the sequel, we shall denote the point of C which belongs to the jth
 sheet and has a projection A on the A-plane by A^. The map v(P) has its only pole at
 the point at infinity of some sheet of ?; we enumerate the sheets of C in such a way
 that this sheet has number one; therefore,

 v(P) = A + o(l) as P-+ oo*1). (2.1)

 Theorem 2.1. Function v(P), considered locally as function ofX and depending
 on branch points X?,..., XM as parameters, satisfies the following equations:

 ? = 1 + V-n?, ? =-n?, 2.2 oX ^{v-yn dXn v-yn
 where am are some functions of the branch points.

 Proof. Consider the local behaviour of the function v(P) near a branch point,

 v(P) - ym + Km^/X-Xm + 0(X- Am) as P- Pm. (2.3)
 From (2.3), we conclude that

 dv Km dv Km

 as P-*Pm. By (2.3), we can rewrite these expansions using v(P) as the global
 coordinate on C,

 ^ = "" , + 0(1), -^=-*mn9{ ^ , + Q(l), (2.4) dX 2(v-ym) dXn 2(v-yn)
 where yn = v(Pn). Moreover, from (2.1), we conclude that dv/dX= 1+ o(l) and
 dv/dXn = o(l) as v(P) ?> 00. Therefore, dv/dX is a meromorphic function of v with
 simple poles at all the points yn with residues K2n/2 and value 1 at infinity.
 Analogously, the function dv/dXn is a meromorphic function on CP1 with simple
 pole at Xn and zero at infinity. Therefore, we get equations (2.2) with an = K2n/2.

 Corollary 2.1. The critical points ym of the rational function (1-4) an?1' residues
 am from (2.2) depend on the critical values Xm as follows:

 ^=?^-, >?*?; ?= - 1 + ? -*? <?)
 dam 2anam dam A 2anam
 ?*n (Y?-Ym) 6Xm n=fn%m (Tn ~ Ym)

 for all m, n= 1,..., M.

 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1061

 Proof. Equations (2.5) and (2.6) follow from the compatibility of equations
 (2.2).

 Rational functions of the form (1.4) were introduced by Kupershmidt <fe Manin
 (1977) in connection with Benney systems. The fact that the critical points of
 these functions satisfy equations (2.5) and (2.6) follows from the recent paper by
 Gibbons & Tsarev (1999).1 However, we did not find in existing literature the
 whole set of equations (2.2), (2.5), (2.6) associated to the functions (1.4).

 (i) Twofold coverings

 Consider the simplest case N=2, when the covering C has two sheets and two
 branch points Al5 A2. Then the rational function R(y) (1.4) can be explicitly
 written in terms of its critical values Xi and X2,

 ^)=v+16(7(_A;-y;)/2). (2.7)
 The map v(P) looks as follows:

 p(P) = 1 (x + ^?^ + y/iX-W-h)). (2.8)
 The critical points y1?2 and variables aii2 are given by

 yiSpiXl) = S?+k, T2S^) = V^, (2.9)

 ?i=-?2=^. (2-10)
 (b) Spaces of rational maps and new hierarchy of non-autonomous

 integrable systems

 Starting from an arbitrary branch Af-fold covering C of genus zero, we can
 construct a hierarchy of integrable systems as follows.

 Fix some point P0 e C such that its projection X0 on CP1 is independent of all
 {Xm}, i.e. y0 :=v(Po) depends on {Xm} according to the equation

 #(Yo(^i>~-?^m)) = V
 Consider the following system of first-order differential equations for a rXr
 matrix-valued function W(P,{Xm}):

 IT I =i^r^J^' (211) Mm |ir(P) n^)~7m
 where Jm are rXr matrix-valued functions of {Xm}; variable X?tv(P) remains
 fixed under differentiation.

 As a corollary of compatibility conditions of the linear system (2.11), functions
 Jm can be expressed in terms of the single function G = W(P0),

 Jm^^-G'1; (2.12) 0Am

 1 We thank E. Ferapontov, who attracted our attention to this work.

 Phil. Trans. R. Soc. A (2008)
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 1062 A. Kokotov and D. Korotkin

 moreover, the function G satisfies the following system of nonlinear partial
 differential equations:

 ((Yo- ym)GKG~1)K - ((To- tOGj.G-1)^. (2.13)
 (to derive (2.13) from (2.11) one needs to make use of equations (2.2), (2.5) and (2.6)).

 Alternatively, consider W(P) as a function of v(P) and Al5..., XM. Then, since
 v(P) is itself a function of A and {Am}, we can rewrite (2.11) using the chain rule

 dW 1 _ dW I dv dW
 d^m \n{P) dXm l^p) dXm dv '

 where the partial derivative dW/dXm in the r.h.s. is taken for fixed v(P).
 Then, using (2.2) for dv/dXm, we rewrite (2.11) as follows:

 ____|_ j W) (214)
 dXm \V(P) v(P) - ym dv(P) v(P) - ym W^ K^}

 A simple calculation making use of equations (2.13) and system (2.5) and (2.6)
 shows that if G({Xm}) is a solution of nonlinear system (2.13), then the 1-form

 ^t^1^^^^'1)2^ (2.15) m=l m

 is closed, dq=0.
 The closedness of the 1-form q implies the existence of the potential r, which

 can naturally be called the tau-function of the nonlinear system (2.13).

 Definition 2.1. The function t(Xi, ...,XM), defined by the following system
 of equations:

 ^_(To-Ym)2tr(g g-y (216) dXm 2am y *"> > V '
 up to an arbitrary constant multiplier, is called the tau-function of integrable
 system (2.13).

 Using equations (2.13), (2.5) and (2.6), we find that the second derivatives of
 the tau-function are given by the following expression:

 j!!nr_(Yo-Ym)(Yo-Yj , , dXmdXn 2(Tm-Y?)2 l "" " ;
 for m^n.

 Taking the residue of the linear system (2.14) at P? Pm, we find

 amW,W-\Pm) - (y0-Jm)GXmG'1; (2.18)
 due to this relation, the definition (2.16) allows an alternative formulation.

 Definition 2.1 The tau-function of the system (2.13) is defined by the following
 equations:

 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1063

 where

 dPWW~l = Wv{P)W~1dv(P). (2.20)
 Let us prove the equivalence of the two definitions of the tau-function. Using

 v(P) as a global coordinate on C, we have

 dX =?dv; ov

 therefore,

 ^ ra=l imj
 and (2.19) coincides with (2.16).

 (ii) The Ernst equation

 For N=2, the hierarchy (2.13) reduces to a single equation. If one chooses
 point P0 to coincide with oo^2^ (i.e. the point of C where X = o? and in a
 neighbourhood of which \/(X? XX)(X? X2) = ?X + (Ax + X2)/2 + o(l)), we get

 To = K*o) =?2?'
 Taking into account expressions (2.9), we have

 Yo-Yi=^, To-T2=^. (2-21)
 If we now assume that X1 and X2 are conjugated to each other, Xi = ?, A2 = f, then
 equation (2.13) takes the following form:

 ((?- f)Gf G"1)! + ((?- f)Gf G"1^ = 0. (2.22)
 This equation is called the Ernst equation; it is equivalent to vacuum Einstein's
 equation for stationary axially symmetric spacetimes (the matrix G in this case
 must be real, symmetric and must have unit determinant). In this case, the linear
 system (2.11) is equivalent to the Lax representation of the Ernst equation found
 by Belinskii k Zakharov (1978) and Maison (1978). We note that the Maison's
 Lax pair is a partial case of our linear system written in the form (2.11), whereas
 the Belinskii-Zakharov linear system is a partial case of (2.14).

 Owing to expressions (2.10) for alj2, the definition of the tau-function r can be
 written down as follows:

 ^-izi^c-)', "p.ti^c-.)'. (2.23)
 Formula (2.23) coincides with the definition of the so-called conformal

 factor?one of the metric coefficients which correspond to a given solution of the
 Ernst equation.

 Phil. Trans. R. Soc. A (2008)
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 1064 A. Kokotov and D. Korotkin

 (c) New integrable systems and deformation scheme of
 Burtzev-Mikhailov-Zakharov

 The possibility to construct the class of 'deformed7 integrable systems, or
 integrable systems with variable spectral parameter, different from the Ernst
 equation, was first discovered by Burtzev et al. (1987). They proposed to
 consider the Lax pairs of the form

 dW dW
 ? =UW, ? = VW, 2.24
 ox oy

 where x and y are independent variables; matrices [/and Vdepend on (x, y) and
 the variable spectral parameter v (which in turn depends on (x, y) and the
 'hidden' spectral parameter A),

 V(*,y,) = ^y) + ?v(x^^y), (2.25)

 As a part of compatibility conditions of the linear system (2.24), after an
 appropriate fractional linear transformation in the *>-plane, the following system
 of equations for v(x, y, X) must be satisfied

 *+?_H_?0, ? + ?_?=_?(), (2.27)
 where bn and cn are certain functions of (x, y). The compatibility condition of the
 system (2.27) gives the following system for yn(x, y) and yn(x, y):

 ^!L + ^_^_ = 0, ^ + ^-^-^ = 0, (2.28) Oy m=i Tn Tm V% m?i Tn Tm

 ^-24(^=?^-26?S(fyyy=a (2-29)
 It is easy to establish the relationship between solutions of the system (2.27),

 (2.28) and (2.29), and solutions of our system (2.2), (2.5) and (2.6).
 Namely, suppose that function v(X,{Xm}m=\) satisfies equations (2.2) with

 respect to variables Xm. Assume that M? Nx + N2 and split the set of variables
 {Ai,...,Ajy1+jv2} into two subsets: {Al5..., XNl} and {Xl,..., XN<2}, where
 Xn= XNl+n,n=l, ...,N2. In the same way, we split the set {Tm} of values of
 function v(P) at these points,

 {Ti,-.-,Tm} = {Ti,-..,Tiv1}U{Ti,...,TiV2},

 where yn = yNl+n, n=l,...,N2.

 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1065

 Now assume that the 'untilded' variables Al5..., XNl are arbitrary functions of
 variable # and the 'tilded' variables Al5..., XNl are arbitrary functions of variable y.
 Then using (2.2), we get the derivative of v(P) with respect to x,

 ? = Y" J_!_______ = _y^ dAm am
 dx ^ dXm dx ^ dx v-ym'

 therefore,

 ux m=i ^ Tm

 where cm =am^-; this coincides with the second equation in (2.27). The first
 equation in (2.27) is obtained in the same way after identification

 h = d^Ni+m
 Vm ? aNl+m "n

 Equations (2.28) and (2.29) for yn, bn and cn as functions of (x, y) arise as
 compatibility conditions of equations for vx and vy.

 Therefore, spaces of rational maps of given degree provide solutions of the
 system (2.27), (2.28) and (2.29) ifwe

 (i) split the set of the branch points {Xm} into two subsets and
 (ii) assume that one subset contains the branch points which are arbitrary

 functions of x only and another subset contains the branch points which are
 arbitrary functions of y only.

 Concluding, we see that the system (2.13) provides realizations of the
 deformation scheme of Burtzev, Mikhailov and Zakharov.

 (d) Solutions via the Riemann-Hilbert problem

 Solutions of systems (2.13) in terms of matrix Riemann-Hilbert problem are
 given by the following theorem.

 Theorem 2.2. Consider a closed contour I on the branch covering C such that
 its projection n(l) on the X-plane is independent of{Xm}. Assume that none of the
 ramification points Pm belongs to I. Define a non-degenerate matrix function
 Zb Pk-> H(P) which is independent of{Xm}. Suppose that a function W(P) satisfies
 the following Riemann-Hilbert problem on C:

 (i) W(P) is holomorphic and non-degenerate on C outside of the contour I
 where it has the finite boundary values related as follows:

 W+(P) = *P__(P)77(P). (2.32)

 (ii) W satisfies the normalization condition at ooW (this is the point of ? such
 that tt(oo^) = oo and v(oo^) = oo):

 W(^w) = I. (2.33)
 Phil. Trans. R. Soc. A (2008)
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 1066 A. Kokotov and D. Korotkin

 Then the function W satisfies the linear system (2.11) with

 G = W(P0), (2.34)
 and, therefore, the function G solves the system (2.13).

 Proof. Let W satisfy the Riemann-Hilbert problem. Consider its logarithmic
 derivative W^JP^l^py Owing to the independence of the contour I and the
 matrix 77(P) of Am, this logarithmic derivative is single valued on C. Moreover, it
 is obviously holomorphic on C outside of the point Pm. Let us write the first two
 terms of the Taylor expansion of ^(P) near Pm

 then

 Therefore, in terms of the uniformization map v(P), we can write
 I C ip\ w~l\ - m

 Up) v(P)-ym'
 with some matrix Cm which is independent of P. The constant term in this
 formula is absent due to normalization condition (2.33). To compute Cm, we put
 P= Pq, i.e. v(P)-, then using (2.34), we get

 cm = (yo-ym)GXmG-\
 which shows that the function W, indeed, satisfies (2.11), and the corresponding
 function G solves the system (2.13).

 Below we also establish a relationship between systems (2.13) and another
 type of the Riemann-Hilbert problems, where the function W is allowed to have
 regular singularities.

 (e) Relationship to isomonodromic deformations

 The set of solutions of each system (2.13) has a subset corresponding to
 isomonodromic deformations of ordinary differential equations with mero

 morphic matrix coefficients,

 ?--%)*, 'm-Et-V <235)
 where Aj ^ gl(r) are certain matrices which are independent of y and such that
 ^2jLx Aj = 0. Consider GL(r)-valued solution W(y) of (2.35) satisfying the initial
 condition at some point y0 G CP1,

 W(y0) = I. (2.36)
 The solution W(y) has regular singularities at the points zf, this function is

 generically non-single valued in the y-plane: it gains the right multipliers Ma
 under analytical continuation along contours starting at y0 and encircling
 poles Zy The matrices Mj are called the monodromy matrices of equation (2.35);

 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1067

 they generate the monodromy group of equation (2.35). If all the monodromy
 matrices are independent of the positions of singularities {zj}, then (in the
 generic case, when none of the eigenvalues of each matrix Aj differ by an integer
 number) the function W satisfies the following equations with respect to the
 positions of singularities z3

 W ( A, Aj \ , ? = -3?-J?)W. 2.37) dzj \yo~Zj y-Zjj
 Compatibility of equations (2.35) and (2.37) is equivalent to the Schlesinger

 system for the functions Aj({zk}),

 dA3 _ [A^ Ak] _ [Aj, Ak)
 dzk Zj - zk y0 - zk

 dA^ = _y f[Ak,A3] [Ak,A3]\

 The tau-function rJM of the Schlesinger system, introduced by Jimbo et al.
 (1981), is defined by the following system:

 ?\nrJM=^ves\ tv{WyW'"f- *g* = 0. (2.39)
 Each solution of the Schlesinger system induces a solution of hierarchy (2.13)

 according to the following theorem.

 Theorem 2.3. Consider a solution {Aj({zk})} of the Schlesinger system (2.38),
 together with corresponding tau-function rJM and solution W(y, {zj}) of the linear
 system (2.35) and (2.37) normalized by (2.36). Let C be a genus 0 covering of the
 X-plane with simple ramification points Pl5 ...,PM; choose the map v(P) to satisfy
 (2.1). Consider an arbitrary set of points P0 and Q\,...,Ql on C such that
 their projections X0 and /x1? ...,Mz on CP1, respectively, are independent of the
 branch points Al5..., XM. Let us assume that the arguments of the solution and the
 tau-function of the Schlesinger system are given by the formulae

 Zj = v(Qj), Yo="(^o)- (2-40)
 Then the function

 ^(P,{Am})=^(y,y0,{^}) , (2.41)
 r=K^),ro=K^o)^-=KQj)

 satisfies the linear system (2.11) of the hierarchy (2.13) with the functions Jm
 defined by

 U{K})=-^?A(ym). (2.42) Tm" To

 Therefore, according to (2.12), we have Jm= G^G"1 for some function
 G({Xm}), which satisfies the system (2.13).

 Phil. Trans. R. Soc. A (2008)
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 1068 A. Kokotov and D. Korotkin

 The corresponding tau-function r is related to the Jimbo-Miwa tau-function
 as follows:

 A (dv \1yAV2 I
 t({U) = II (jJiW) tJm{{*3})\ , (2.43) j=l \ J \Zj?v(Qj)

 where the derivative dv/dX is given by equation (2.2).

 Proof. Taking the derivative of the function W(P) with respect to Xm using the
 chain rule, we get

 dW(P) I dW dv(P) ^dW dZj
 <3Am l^p) dv(P) dXm ?_i dzj dXm

 jr{ v(P) - Zj ym - v(P) j^ v(P) - Zj ym - Zj

 ?m y* Aj y- To-Tm j w
 v(P)-ymjr(z-ym v(P)-ym m '

 where functions Jm are defined by (2.42).
 Let us show how to prove the relation (2.43) between tau-functions. Taking

 into account the definition of Jimbo-Miwa tau-functions (2.39), we have

 Now, using definition (2.16) of the tau-function r, we get

 ^I-ii,r(r.*-)'|
 L,42 I (2-44)

 By (2.2), we see that

 _.il_miU_^L_ __._____.
 dX^W^f (ym-Zjr dXm ym-z,>

 therefore, applying the chain rule in (2.44) (and taking into account that trA2 are
 integrals of the Schlesinger system), we come to (2.43).

 Remark 2.1. The relationship between the systems (2.13) and isomonodromic
 deformations is a generalization of the link between the Ernst equation and the
 Schlesinger system established by Korotkin & Nicolai (1996).

 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1069

 (/) Rank 1 systems

 When the function G from (2.13) is a scalar one, the system (2.13) can be
 rewritten as a system of linear scalar second-order differential equations in terms
 of the function f({Xm}) = In G,

 oXmdXn yn - y0 oXm ym - y0 oXn
 In derivation of the system (2.45) from (2.13), we used equations (2.5).
 In particular, any solution of the matrix system (2.13) gives a solution of the

 scalar system (2.45) if we put /= In det G.
 The linear system (2.11) turns in rank 1 into the scalar system

 <ty(f) _ To-Tm <V
 dXm n{P) v(P) - ym dXm

 where \j/(P, {Xm}) = In W. As well as in the matrix case, the function xf/ is
 generically non-single valued on C.

 The definition of tau-function (2.16) now looks as follows:

 dlnr _(y0-ym)2 f df}2
 dXm 2am \dXm)

 Alternatively, it can be rewritten in terms of the function ^p{P), using (2.19),

 dlnr 1 f(di^)2l ,? ,?*

 where d\//(P) = \l/v(P)dv(P).
 Let us discuss the solutions of system (2.46) and equation (2.45).

 Theorem 2.4. Let I be an arbitrary smooth closed contour on C such that its
 projection on the X-plane n(l) is independent of {Xm} and Pm ? / for any m.
 Consider on I an arbitrary Holder-continuous function h(P) independent of{Xm}.
 Then the function

 t-AOmSL, (2.49) Ti K<2)-To
 satisfies system (2.45).

 Proof. In the scalar case, we know explicitly the solution of an arbitrary
 Riemann-Hilbert problem from theorem 2.2. If we define the function

 h(P)=?-MH(P).
 (we assume that it is single valued on /, i.e. the index of H(P) on / equals 0), the
 Riemann-Hilbert problem (2.32) becomes additive

 xl/+(P)=xls4P)+2mh(P), (2.50)
 for P e I (we recall that \p = In W); here \//? stands for the boundary values of the
 function \j/ on /. Normalization condition (2.33) turns into

 iKooW) = 0. (2.51)
 Phil. Trans. R. Soc. A (2008)
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 1070 A. Kokotov and D. Korotkin

 The solution of (2.50) and (2.51) for a Holder-continuous function h(P) is given
 by the Cauchy integral

 ^p)-%{Q)-v{py (2-52)
 which implies (2.49) at P= P0, when v(P) = y0.

 Formula (2.49) can also be verified as follows. First, one can check by the
 direct substitution, using equations (2.2), (2.5) and (2.6), that the function

 /-77^-JT~ ' V2-53) nQ)-Jo dx
 satisfies system (2.45) for any A = n(Q) independent of {Am}. Using linearity of
 equation (2.45), we can consider the superposition of these solutions at different
 Q^ I with an arbitrary {Am}-independent measure h(Q), which leads to (2.49).

 In fact, we can consider any (say, compact) subset DdC whose projection on
 A-plane is {Am} independent, and such that Pm ? D. We can define an arbitrary
 {Am}-independent measure dji(Q) on 7); then the superposition principle implies
 that the function

 is a solution of (2.45).

 (iii) The Euler-Darboux equation

 As we noticed earlier, for the twofold covering with two branch points, Ax = ?
 and A2 = ?, the system (2.13) is equivalent to Ernst equation (2.22). In the scalar
 case, we get the following equation in terms of / = ln G:

 k 2(f-f)
 If we introduce the real coordinates (z,p) such that f = z+ip, !; = z ? ip, this
 equation takes the form of Euler-Darboux equation,

 L+-fP+fPP = 0. (2.55) P

 From (2.8), taking into account that P0 = ??^ and y0 = (At + A2)/2, we obtain

 1 dv(P) _ 1
 KP)-7o dX " [(A _f)(A-f)]i/

 Then representation (2.49) gives the solution (Courant & Hilbert 1962) of the
 Euler-Darboux equation,

 f=s__m_
 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1071

 3. Generalization to higher genus

 Here, we discuss possible ways to define systems, analogous to (2.13), starting
 from Hurwitz spaces HgN, which are spaces of meromorphic functions of degree
 N over Riemann surfaces of genus g, in genus g> 2 (we skip the case g=l when
 the classification of stable bundles is rather special (Atiyah 1957), see also
 Remark 3.1 below).

 As before, denote the critical points of a meromorphic function ff(P) on a
 Riemann surface of genus g by P1,..., PM and their images in CP1 by
 Am = 7r(Pm). This meromorphic function realizes the Riemann surface as a
 ramified TV-fold covering C of genus g of the A-sphere with ramification points
 -Pi? ---j Pm- Assuming that all the branch points Xm are different and simple, we
 get, according to the Riemann-Hurwitz formula,

 M = 2g + 2N-2.

 Let us introduce on ? a canonical basis of cycles (aa,ba) (a=l, ...,g) and
 corresponding basis of holomorphic 1-forms wa(P) (a=l, ...,g), normalized by

 (a) Rank 1 systems in arbitrary genus

 The scalar systems (2.45) admit natural generalization to the Hurwitz spaces
 HgN- Denote the prime form on C by E(P, Q) (where P, Q^C); introduce the
 canonical meromorphic bidifferential B(P, Q) = dpdgln E(P, Q). By Bm(P), we
 denote the meromorphic differential of second kind with vanishing a-periods and
 single pole at Pm of the second order with the following local behaviour:

 Bm(P) = (^+0(l))dxm, \xm /

 as P? Pm, where xm= y/X? Xm is a local parameter near Pm. Differentials Bm
 are related to B(P, Q) as follows:

 aXmiQ) Q=Pm

 Corresponding Abelian integrals we denote by Qm,

 where Q0 e C is a base point such that its projection on A-plane does not depend
 on {AJ.

 Let us prove the following variational formula.

 Theorem 3.1. Assume that the local parameters xP, xq do not depend on
 (some) Xm. Introduce the symmetric function

 b(P,Q)=^^ = -^?\nE(P,Q). (3.3) dxpdxq oxpdxq

 Phil. Trans. R. Soc. A (2008)
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 Then dependence of b(P, Q) on the branch point Xm is given by the following
 equation:

 ^^- = \b(P,Pm)b(Q,Pm). (3.4)
 Proof Formula (3.4) is closely related to the Rauch variational formulae

 (Rauch 1959, Fay 1992) which describe dependence of holomorphic differentials
 on the branch points. The proof is also very similar. Namely, consider the
 Am-derivative of the canonical meromorphic bidifferential, dB(P, Q)/dXm. This is
 a symmetric 1-form on CXC Consider the Taylor series of B(P, Q) with respect
 to its first argument P in a neighbourhood of ramification point Pm,

 B(P,Q) = {% + alxm+"]dxm = {ao + a1xm+-} ??, (3.5)
 Zy/A? Am

 where Oq, a1?... are some 1-forms with respect to Q. Differentiation of (3.5) with
 respect to Am gives

 as P?> Pm. Therefore, dB(P, Q)/dXm is a meromorphic 1-form with respect to P,
 with the only pole at Pm of the second order with leading coefficient

 %(Q) = B(Q,P)\
 2 2dxm(P) |P=Pm'

 (which is itself a 1-form with respect to Q) and vanishing a-periods. Taking into
 account the symmetry of B(P, Q), we get

 dB(P, Q) 1 __! (B(P,R)\ \(B(Q,R)\ \
 dXm l^p) 2 \dxm(R) \R=pm) \dxm(R) \r=pJ '

 which is equivalent to (3.4).

 Since differentials Bm are related to B(P,Q) via (3.1), the theorem
 immediately implies the following useful.

 Corollary 3.1. The Abelian differential Bn(P) and the Abelian integral Qn(P)
 depend on Xm (for any m^=n) as follows:

 -?-Bn(P)\ =U(Pm,Pn)Bm(P), < m \ir(P) *
 (3.8)

 ^-Qn(P)\ =\b(Pm,Pn)Qm(P).
 Now we are in position to formulate the analogues of the Euler-Darboux

 equation in arbitrary genus.

 Theorem 3.2. Consider the following linear system of scalar equations for
 function \)/(P, {Xm}):

 ^P-\ =RmQm(P), (3.9) aAm W(P)

 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1073

 where Rm are some functions of {Xm}. Denote by P0 a point of C such that
 Xq = 7t(P0) does not depend on {Xm}. Then the compatibility conditions of the
 system (3.9) are given by the following equations:

 * _^|i? + i?|_0i (3,0) dXmdXn 2 {vm dXm vn dXn)
 where f({Xm}) = \f/(P0) and

 Vm = ?m(Po) = Bm;
 JQo

 function b(P, Q) is defined by (3.3).

 Proof. Substituting in (3.9) P= P0, we see that

 p __ f^m
 m om(p0y

 Then the compatibility conditions of the system (3.9) are equivalent to the
 system of equations

 d fdf Qn(P)\ d f df Qm(P)\ _n m.n ,,m
 dXm\dXn Qn(P0)j dXn\dXmQm(P0)j "' m*H ^il)

 Using (3.8), we rewrite this equation as follows:

 / Qn(P) Qm(P) \
 h^\Qn(P0) Qm(P0)j

 (3.12)

 The l.h.s. of this equation is an Abelian integral on C with respect to argument P
 with vanishing a-periods (since all o-periods of differentials Bm(P) vanish) and
 the poles (of the first order) only at Pm and Pn. Since Qm(P) = ?l/xm+ 0(1)
 as P^ Pm, we immediately see that equations (3.10) are equivalent to absence
 of poles of (3.12) at Pm and Pn. Therefore, the l.h.s. of (3.12) must be a
 constant with respect to P; choosing P= Pq we see that this constant vanishes.

 We conclude that equations (3.10) indeed provide compatibility of the linear
 system (3.9).

 In analogy to the case of genus zero, now we shall define the tau-function of the
 system (3.10) and construct its solutions via solutions of the scalar Riemann
 Hilbert problem on C.

 We define the tau-function of the system (3.10) by the following system of
 equations:

 d , fx d In r , ? lnr = ^f, -j=- = 0. 3.13 d*m < dXm
 Phil. Trans. R. Soc. A (2008)
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 1074 A. Kokotov and D. Korotkin

 From variational formulae (3.8) and equations (3.9), it follows that

 ^\f\\=b(Pm,Pn)f-^. (3.14) ?xn [*4J vmvn
 Symmetry of this expression with respect to m and n proves compatibility of
 equations (3.13).

 As well as in the case of genus zero, we can prove the following

 Lemma 3.1. Definition (3.13) of the tau-function can be alternatively rewritten
 in the following form:

 Proof. Choosing the standard local parameter xm = y/X? Xm near Pm, we have
 dxm = dA/2xm; therefore,

 On the other hand, as P belongs to a neighbourhood of Pm, the linear system
 (3.9) can be rewritten as follows:

 _____! 1 # _ df Qm(P)
 dAm |?(p) 2xm dxm dXm fim(P0) '

 where we separated the dependence of i// on Am which comes from Am-dependence
 of xm. Taking the residue at Pm, we get

 ? I (Pm)=2?-^2?,
 which implies coincidence of (3.13) and (3.15).

 Theorem 3.3 provides solutions of the system (3.9).

 Theorem 3.3. Let I be an arbitrary smooth closed contour on C such that its
 projection on the X-plane it(l) is independent of {Xm} and Pm&l for any m.
 Consider on I an arbitrary Holder-continuous function h(Q) independent of{Xm}.

 Then the function

 /=f(wftf' (3i6)
 satisfies the system (3.10). Corresponding solution of the linear system (3.9) is
 given by

 W=^(Wn|^?. (3.17)
 Proof Before proving the statement of the theorem, we note that if the

 function h(Q) is Holder continuous, then t// (3.17) is a solution of the Riemann
 Hilbert problem on the contour I with jump 2nih(Q).

 Phil. Trans. R. Soc. A (2008)
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 New hierarchy of integrable systems 1075

 Let us now verify that the functions /and x// defined by (3.16) and (3.17) satisfy
 the linear system (3.9),

 #_ _ Qm(P) V (318)
 <^m tt(P) ?m(Po) d^m

 Taking into account representation (3.2) of Qm(P) in terms of prime forms,
 in analogy to Rauch formulae given by Th. 3.1, we see that the Cauchy kernel
 dgln(?'(P, Q)/E(Q0, Q)) depends on Am (assuming that all points P, Q, Q0 are Xm
 independent) as follows:

 ikWnm3)} = 12BM)^p)- (3-19)
 Therefore,

 Independence of this expression of P proves (3.18). Therefore, the function /satisfies
 the compatibility conditions of (3.18), i.e. the equations (3.10).

 We note that, using superposition principle for the systems (3.10), we can
 substitute integration over contour in (3.16) by integration with respect to an
 arbitrary {Am}-independent measure with compact support; the only condition
 we need to impose on this measure is commutativity of integration in (3.16) with
 differentiation with respect to {Am}.

 (b) Systems of higher rank

 Here we consider coverings of genus g>2. To define rank r analogues of
 equations (3.10), it is natural to start from generalization of the zero curvature
 representation (2.11) to higher genus,

 dW
 JT = UmW, (3.20) vXm

 where the rXr 'Lax matrix' Um(P, {Xn}), P e ? has only one singularity on C, which
 is a simple pole at the ramification point Pm. We shall assume that tr Um = 0 (this
 condition can be always satisfied by normalization of function W,W ? [det*P] ~l'rty).
 As well as in rank 1, the Lax matrix Um(P) cannot be single valued on C. In rank 1
 case, Um has additive twists along basic cycles on C, but dp Um(P) is a single-valued

 meromorphic differential on C with pole of second order at Pm.
 In higher rank, this is not enough?it is necessary to introduce more degrees of

 freedom, and allow dp Um to suffer similarity transformation under tracing along
 each topologically non-trivial closed contour on C (this transformation may be
 {Am} dependent itself).

 More precisely, consider a stable vector bundle % of rank rand degree dover C.
 Require dp Um to be a meromorphic section of the bundle adx ? K with quadratic
 pole at the ramification point Pm (Kis the canonical line bundle), i.e.

 dPUmeH?(?,adx?K(2Pm));
 according to terminology proposed by Hitchin (1987), dPUm is called the
 meromorphic Higgs field.

 Phil. Trans. R. Soc. A (2008)
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 According to the Narasimhan-Seshadri theorem (Narasimhan &; Seshadri 1965),
 a stable vector bundle x is characterized by the set of unitary constant (independent
 of a point Pg?) matrices \ax > ? Xa > Xbx > > Xb ? satisfying one relation

 n*^x?~v=exp{27ri7j
 Stability of the bundle x implies fe?(adx) = 0, i.e. the bundle adx does not have any
 holomorphic section. On the other hand, h?(adx?K)= (g ? l)(r2 ? l); therefore,
 fixing the singular part of dp Um at the ramification point Pm,

 dp Um(P) = (- ^r + Oil)) dxm as P - Pm, (3.21) V xm J
 we define dp Um up to an arbitrary linear combination of (g ? 1) (r2 ? 1) holomorphic
 sections of adx?K. In rank 1 case, we fixed dPUm uniquely imposing the
 normalization condition of vanishing of all a-periods of dp Um\ unfortunately, such
 simple normalization in higher rank is not known to the authors.
 The Lax matrix Um is uniquely defined by dPUm inside of the fundamental

 polygon ? of ? if we fix a normalization point P0 G ? and assume that
 Um(PQ) = 0. The only singularity of the matrix gmm= {(l/2)j>lh(Q)Bm(Q)}2 is
 the simple pole at Pm of the form

 Um(P)= ? +0(l)asP-Fm; xm

 generically Um has both multiplicative and additive non-single valuedness along
 any cycle y ^tti(C),

 Um(Py) - Xy Um(P)X;1 + CI; (3.22)
 since dPUm(Py) = xTdp[/m(P)X'r~\ the 'additive twists' CJm do not depend on P.

 The compatibility conditions of the linear system (3.20) are given by

 Fmn(P) = 0, (3.23)
 where Fmn(P) is the curvature,

 Fmn(P) =^-TT + iUrn, ^]- (3-24)
 To rewrite the compatibility conditions (3.23) in terms of variables depending
 only on {Xm} (and not on the point P of the covering C), we consider the
 coefficients of the Taylor series of Um(P) at the ramification point Pn, n^m,

 ^ml-W =: ^mn "~ 1 mnxn ' "\xnJ

 Then the non-singularity of Fmn at Pm is equivalent to the condition

 ^ + \Tnm + [7i!m, Snm] =0,m*n. (3.25) 6Xn 2
 The non-singularity of Fmn is insufficient for its vanishing, since Fmn(P) has both
 multiplicative and additive twists along topologically non-trivial loops. However,
 if we require that the additive twists Tnnm = ^mn(?h(P)Bm(P))l(?h(P)Bn(P))

 Phil Trans. R. Soc. A (2008)
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 from (3.22) are related to matrices %r via equations

 ^X,"1 = CI, (3.26) dXm

 we observe that transformation (3.22) of the Lax matrices Um is nothing but the
 gauge transformation of connection 1-form J2m=i UmdXm by the matrix
 %T({Am}). Then the curvature coefficient Fmn transforms as follows:

 "mn\* ) /Cy-Fmn\* )/Cy ?

 i.e. Fmn<EH?(adx); thus Pmn = 0.
 We conclude that the compatibility conditions of the linear system (3.20) in

 arbitrary rank rand any genus g> 2, are given by the system of equations (3.25)
 and (3.26). The new feature in comparison with the genus zero case is that we
 get another degree of freedom?the stable bundle % must itself depend on the
 branch points Xm, according to equations (3.25) (since the generic vector bundle
 over C is stable, generically evolution (3.26) preserves stability of x a^ least
 locally, in a neighbourhood of a given stable bundle).

 Obviously, without any normalization of the twisted 1-form dpi!7m, the
 coefficients Smn, Tmn, and additive twists Cym, are not uniquely determined by
 the set of residues Rm, and matrices Xy Therefore, the number of equations
 (3.25) and (3.26) is substantially smaller than the number of variables

 A possible way to define dp Um, uniquely is to make use of one of meromorphic
 bidifferentials W(P, Q), on CXC whose existence is provided by the following
 lemma

 Lemma 3.2. There exists meromorphic bidifferential W(P,Q). on CXC
 satisfying the following conditions.

 (i) On the diagonal P? Q, the bidifferential W(P, Q) has second-order pole
 with biresidue equal to r2 X r2 matrix H (which is the permutation matrix
 mCr?Cr),

 W(P,Q) = {, n ^ + 0(l)\dxPdxQ. (3.27) {(xP-xQ) J
 (ii) Symmetry condition:

 W(P, Q)=nW( Q, P)n. (3.28)
 (iii) Automorphy conditions: for any y ^tti(C), we have

 W(P\Q)=x^W(P,Q)x~\ (3.29)
 W(P,Qy)=x,W(P,Q)x\, (3.30)

 where for any linear operator A in Cr, we denote by A1 and A2 the
 operators A?I and I?A in Cr?Cr, respectively.

 The relation (3.30) isobviously a corollary of (3.29) and the symmetry requirement
 (3.28). Equivalently, relations (3.29) and (3.30) mean that W(P, Q) belongs
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 to 77?(adx1 ?K(2Q)) with respect to its first argument, and to 77?(adx2 ? K(2P))
 with respect to its second argument.

 Proof. Existence of bidifferential Wq(P, Q) satisfying only (3.27) and
 automorphy properties (3.29) and (3.30) can be proved similarly to existence
 of Schiffer kernel corresponding to the bundle adx (e.g. Fay (1992)). To construct
 bidifferential W(P, Q) which satisfies in addition the symmetry condition (3.28),
 suppose that F(P, Q) = Wq(P, Q) ? nW0(Q, P)77 does not vanish; this is a
 holomorphic section of adxx ?7f with respect to P and holomorphic section of
 adx2 ?K with respect to Q. Obviously,

 77F(P,Q)77-=-F(Q,P).

 Now define W(P, Q)= W0(P, Q)-\F(P, Q). Simple calculation shows that it
 satisfies (3.28); other required properties are inherited from W0(P, Q).

 We proved existence of W(P, Q)', obviously this bidifferential is not unique: we
 can add to W(P, Q) an arbitrary linear combination of bilinear products of
 holomorphic sections fk(P) of adx?K, satisfying the symmetry condition (3.28);
 this is a linear combination of the form

 (^lKr2-l) fl 2 12 1
 E <Xjk\fk(P)fj(Q)+fj(P)fk(Q)\, j,k=i { >

 with arbitrary a^. e C.
 Let us fix the bidifferential W(P, Q) in some way (e.g. according to Remark

 3.2 below). Then the Higgs fields dPUm can be defined as follows:
 l f 12 2 1
 tr I W (P, Q)Rm \ .

 d^(f>? lduo) L; (33I)
 Now all variables Smn, Tmn, Cym become functionals of the residues Rm, branch

 points Am and matrices xT; the number of variables (%y, Rm) in the system (3.25)
 and (3.26) coincides with the number of equations.

 The natural definition of the tau-function, in agreement with (2.19), looks as
 follows:

 a 1 I trjipVW'1)2 ^lnr=2rei.?5a? (3-32)
 Consistency of the definition (3.32) is provided by the following

 Lemma 3.3. Let function W solve the linear system (3.20) with Lax matrices
 Um satisfying condition C/m(P0) = 0 for some P0 e ?, and conditions (3.31). Then
 the 1-form

 V^J I __I____TU (*v* 2_^res --^-fd:{m, (3-33)
 is closed.

 Proof. Consider the Taylor series of W(P) in a neighbourhood of Pm,

 W(P)=WQ + xmW1 + 0(x2m);
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 then
 w.w-^w.w^ + oii),

 and

 vxv-1??-v1Vo1 + <Ki). L-Lm

 Therefore,

 llm c\ ^ l^u 1

 and

 1 I tTJdpWV'1)2 1 I tr(-2Pmdxm)2 2 oreS -J^- = oreS -o-A- = trfim ^ |Pm a* Z \Pm zxmaxm
 Now we have to make sure that the derivative d(trP^)/dAn is symmetric under
 the interchanging of m and n,

 ?--tiRm = ? 2trRm< ? lnm ~r [Rm, onm\ > = ?tiHmlnm. (o.o4)

 As P? Pm, we have

 tr{dPC/m(P)dPC/n(P)} = (-trRmTnm+-)(^) ; \ ^m /

 symmetry of (3.34) is thus equivalent to relation

 bires tr{dpUmdPUn} = bires tr{dp(7mdp[/n}. \p \p
 Let us rewrite the l.h.s. of this relation in terms of bidifferential W(P, Q) =
 w(P, Q)dxpdxq according to (3.31), taking into account the behaviour (3.27) of
 W(P, Q) on the diagonal P= Q,

 biresl tr{dpc/mdpc7j = bires| trjtU

 = trtr|^m^^(Pm,Pj|. (3.35)
 Similarly,

 I 1 2 f 2 1 12 "I
 bires tr{dPUmdPUn} = tr tr I RmRnw (Pn,Pm) \

 l 2 f 2 l 12 1
 = trtr lRmRnnw (Pm,Pn)n\

 = tr t'r iRmRnw (Pm,Pn)\, (3.36)

 coinciding with (3.35); the last equality in (3.36) follows from the symmetry
 property (3.28) of W(P, Q).
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 Remark 3.1. More explicit treatment is, as usual, possible for elliptic coverings
 g=l, when the bundle odx can possess meromorphic sections with single simple pole.
 In this case, the additive twists Cym are absent, and monodromy matrices xT of the
 bundle x can be chosen to be independent of { Am}. In this case, the above construction
 can be nicely rewritten in terms of the elliptic r-matrix (Shramchenko 2003).

 Remark 3.2. In rank 1 case, we have fixed the bidifferential W(P, Q) by the
 requirement that all of its a-periods vanish; then W(P, Q) coincides with canonical

 meromorphic bidifferential. This kind of normalization is not possible in higher rank
 due to non-invariance of W(P, Q) under tracing along homologically non-trivial
 loops on ?. However, in rank 1 case, there exists another way to fix W(P, Q)
 uniquely: one can require that v.p.^W^P, Q)wa(Q) = 0 for any holomorphic
 differential wa (in this case W(P, Q) is called the Schiffer kernel). These conditions
 have natural higher-rank analogue (Fay 1992). Namely, we can require that
 v.p.?tr2 {W12 (P, Q)ff (Q)} = 0 for any fk ^H?(adx?K)', due to unitarity of
 the matrices x? the integrand is a (1, l)-form on C. If the biresidue at P= Qis chosen
 to be the unit matrix 7? 7 instead of permutation matrix 77, our definition of
 W(P, Q) would give the Schiffer kernel corresponding to the bundle adx (Fay
 1992). This normalization of W(P, Q) leads to the following normalization of dp Um:

 v.p.?tr{dPUjk} - 0 for any fk e H?(adx?K).
 We note that, in contrast to canonical meromorphic bidifferential in rank 1, this

 normalization of W(P, Q) makes it non-holomorphic function of 'moduli' Am;
 therefore, in principle, the_complete system of equations should contain also
 equations with respect to {Am}. We shall discuss these aspects in more details in
 further publication.

 (i) Relationship to isomonodromy deformations in higher genus

 The link between the genus zero systems (2.13) and isomonodromic
 deformations on Riemann sphere discussed in ?2e can be extended to arbitrary
 genus (we outline this link here for g>2). Let us briefly describe the
 isomonodromic deformations on a Riemann surface C. Consider a stable flat
 vector bundle x characterized by a set of unitary matrices xT for any y e 7r1(?);
 consider also a divisor Q= Qx + ... + QL on C.

 Introduce a Higgs field A(P) which is allowed to have simple poles at the
 points Qi,...,QL, i.e. A ^H?(adx?K(Q))', suppose that tr,4(P) = 0. The
 higher-genus analogue of the linear differential equation (2.35) looks as follows:

 dPW = A(P)W, (3.37)
 where function W has unit determinant and satisfies the initial condition W(Pq) = 7
 at some point P0 ^ C.

 In analogue to genus 0 case, function W has regular singularities at the points
 Qii-'-iQl with some monodromy matrices Mk, i.e. under tracing around Qk the
 function W(P) transforms as follows:

 W(P)-*W(P)Mk.
 Under tracing along basic cycles of C, the function W gains left multipliers given
 by the matrices x7; in addition, it may gain the right multipliers Maa, Mba, which
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 New hierarchy of integrable systems 1081

 are analogues of monodromy matrices Mk,

 V(Pa?) = XaV{P)Maa, W(Pb?) = xbJ{P)Mba.
 The monodromy matrices Maa, Mha generate a SL(r) 'monodromy' representation
 of the fundamental group iri(C\{Qk})

 If we now assume that all the monodromy matrices Mk, Maa, Mba are inde
 pendent of the branch points Xm and projections ^k = 7r(Qk) ?f the regular
 singularities, then function W satisfies the deformation equations

 ^t = W (3-38)

 Vxm = UmW, (3.39)
 where matrix Vk has simple pole at the regular singularity Qk', matrix Um has
 simple pole at the ramification point Pm; these matrices transform as follows
 under the tracing along any y G TCi(C):

 vk(py) = xyVk{p)x;1 + (xTkxY~\

 UUP") = XyUm{P)Xyl + (XrKx;1
 Obviously, the part (3.39) of the deformation equations is nothing but the linear
 system (3.20) introduced above; therefore, the isomonodromic deformations in
 higher genus correspond, as well as in genus zero, to a subset of solutions of the
 integrable systems (3.25) and (3.26).

 4. Systems of rank 1, Darboux-Egoroff metrics and systems of
 hydrodynamic type

 (a) Darboux-Egoroff metrics

 It turns out that each solution of the rank 1 system (3.10) defines a flat diagonal
 (pseudo-) metric in CM (which gives rise to a flat diagonal Darboux-Egoroff

 metric in R if additional reality and positivity conditions are imposed). In the
 sequel, we shall (in agreement with previous works on the subject) use the term
 'Darboux-Egoroff metric' for such pseudo-metrics in CM.
 For diagonal (pseudo-)metric

 M

 ds2 = Y^ 9mmdX2m, (4.1) m=l

 the Christoffel symbols are given by

 rmn = 0, Tnnm = dxJn^/g^, m^=n^k; (4.2)
 they are related to rotation coefficients (imn as follows:

 ^mn=^rZn^^^, m*n. (4.3) V9nn \9nn
 The metric (4.1) is flat iff the rotation coefficients satisfy the following equations:

 OPmn o o / a a\
 -^~ = PmlPln, (4.4)

 for any distinct I, m, n, and each of /3mn is invariant with respect to simultaneous
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 shifts along all {Xk},

 Pfc-?- (4-5>
 If in addition the rotation coefficients are symmetric, |8mn = (3nm, which is

 equivalent to the relation dmgnn = dngmm, then there exists potential U such that
 __ dU

 9mm _ -5 i
 ?xm

 and the metric (4.1) is called the Darboux-Egoroff metric.
 We shall now prove that each solution of the system (3.10) corresponds to

 Darboux-Egoroff metric.

 Theorem 4.1. Let f be an arbitrary solution of the system (3.9), and r({Xm}) be
 the corresponding tau-function defined by (3.13) or (3.15). Then metric (4-1) with

 d ln r
 9mm = -^-? (4-6)

 is a Darboux-Egoroff metric in CM.

 Proof. Let us compute the rotation coefficients of the metric (4.1). From the
 definition of the tau-function (3.13), we have

 V dAm vm '
 using the expression (3.14) for the second derivative of the tau-function, we find

 2 V(lnr)AmV(lnr)An 2

 These functions satisfy the equations (4.4) as a corollary of variational formulae (3.4).
 It remains to prove that each b(Pm, Pn) satisfies equations (4.5). We shall use

 invariance of the canonical meromorphic bidifferential B(P, Q) with respect to
 biholomorphic maps. Let us consider the branched covering Ce, which is obtained
 by small e-shift of all the ramification points Pm in A-plane, i.e. the projections of
 branch points P^ of C on A-plane are equal to Xem = Xm+ e; Be is the canonical
 meromorphic bidifferential on Ce. Denote the projections of points P and Q on
 the A-plane by A and \i, respectively. Define the point Pe to be the point lying on
 the same sheet as P and having projection A + e on the A-plane; in the same way,
 point Q belongs to the same sheet as Q and has projection /i + e on the A-plane.
 Since Ce can be holomorphically mapped to C by transformation A ? A + e on all
 the sheets, we have

 _*(J* Q<) = B(P, Q). (4.8)
 Assuming that P belongs to a neighbourhood of the branch point Pm, and Q
 belongs to a neighbourhood of the branch point Pn, we can write down the
 respective local parameters as xm(P) = ^/X? Xm and xn(Q) = y/jx? Xn. These
 parameters are obviously invariant with respect to simultaneous e-shifts of all
 {Am}, A and fi: x m(Pe) = xm(P) and xen(Qe) = xn(Q). Therefore, equality (4.8)
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 induces the same relation between b(P, Q) = B(P, Q)/dx(P)dx(Q):
 bt(P(,Q<) = b(P,Q). (4.9)

 Assuming now that P? Pm and Q= Pn and differentiating (4.9) with respect to e
 at e = 0, we come to (4.5).

 Of course, besides simultaneous translations, the canonical meromorphic
 bidifferential is invariant with respect to any other Mobius transformation of the
 A-plane performed simultaneously on all the sheets of C. We can use this
 invariance to obtain two relations, corresponding to other one-parametric
 families of Mobius transformations.

 Proposition 4.1. The rotation coefficients (4-7) of the Darboux-Egoroff metric
 (4-1) satisfy the following relations:

 {M q "| ^h-^\Pmn=-Pmn, (4-10)

 {M q } Yl^JT Vmn = "(An + Xm)^mn' (4,11) k=l k)
 Proof. Relation (4.10) corresponds to invariance of the canonical mer

 omorphic bidifferential under simultaneous dilatation on every sheet of C, i.e.
 to the transformations

 Am -* (1 + e)Xm, X - (1 + e)X, M -* (1 + C)M.

 The new feature in comparison with the proof of relation (4.5) is that the local
 parameters are now dependent on e,

 xUPl = [(1 + e)X-(l + e)Xj/2 - (1 + e)1/2*m(P),
 and

 4(Qf) = [(1 + e)M-(l + e)Xnf2 = (1 + ef2xn(Q);
 therefore, invariance Be(P , Qe) = B(P, Q) of the canonical meromorphic
 bidifferential translates on the level of b(P, Q) as follows:

 (l+e)be(Pf,Qt) = b(P,Q). (4.12)
 Differentiating this relation with respect to e at 6=0 via the chain rule and
 choosing P= Pm and Q= Pn, we get (4.10).

 In a similar way, we can deduce (4.11) from invariance of the canonical
 meromorphic bidifferential with respect to the one-parametric family of
 transformations

 on each sheet of C.

 Relation (4.10) for the rotation coefficients can be found in Dubrovin (1996);
 relation (4.11) seems to be new. We also note that all primary differentials used
 by Dubrovin (1996) to construct Frobenius manifolds from Hurwitz spaces can
 be obtained from solutions (3.16) of the systems (3.10) by appropriate
 specification of the contour / and the function h(Q).
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 (b) Systems of hydrodynamic type

 According to well-known results (e.g. review by Tsarev (1990)), to each
 Darboux-Egoroff metric, one can associate a class of diagonal systems of
 hydrodynamic type

 where functions Vm({Xk}) (the 'characteristic speeds') are related to Christoffel
 symbols (4.2) of the metric (4.1) via system of differential equations,

 ^m *n -* nm\ ^m *n). ^4.14j

 Compatibility of equations (4.14) is provided by equations (4.4) for rotation
 coefficients.

 Let us choose some solution of the system (3.10) parametrized by an arbitrary
 function h(P) on contour / (3.16). Then the metric coefficients (4.6) are given by

 gmm = {^<j)ft(G)?m(<?) j (4.15)
 The Christoffel coefficients of this metric look as follows:

 S)h(P)Bm(P) Tn = B ?_ (4 16) x nm Hmn r K^'^^J

 <j)h(P)Bn(P)
 Solutions of equations (4.14) for these Christoffel coefficients are described

 by the following proposition2

 Proposition 4.2. Let hi(P) be an arbitrary Holder-continuous function and
 independent of {Xm} function on contour I. Then the functions

 S)hx(P)Bm{P)
 Vm=2j-, (4.17)

 <ph(P)Bm(P)
 satisfy system (4-14) with Christoffel coefficients given by (4.2).

 The proof of this proposition is a simple calculation based on Rauch
 variational formulae for differentials Bm,

 -?-Bm(P)=PmnBn(P). (4.18) dXn

 To construct solutions of the system (4.13) with characteristic speeds (4.17),
 one needs to use the following theorem by Tsarev (1990):

 Theorem 4.2. Let functions Vm(X1,...,XM) satisfy equations (4-14)- Then the
 system of equations

 &m({h}) = t+Vm({Xk})x, (4.19)
 2Formula (4.17) is due to T. Grava (2001, private communication); similar formula for the case of

 Whitham equations was obtained by Krichever (19896).
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 New hierarchy of integrable systems 1085

 defines implicit solution {Xm(x, t)} of the system of hydrodynamic type (4-13),
 where _>m(A1?..., AM) is an arbitrary solution of the system of differential
 equations

 d _> d V ^n^m _ wn v m (a r%c\\ 0 -$ ~v-v' [ ' ^m ^n y m v n

 for m, n= 1, ...,M.

 To apply the hodograph method to any of these systems, we need to solve also
 the system of equations (4.20) for functions _>m. Obviously, the solution is given
 by same formulae as the solution of equations (4.14) for functions Vm, but with
 another arbitrary Holder-continuous function h^(P) independent of {Xm},

 (f)fh(P)Bm(P)
 *m=H- (4-21)

 <ph(P)Bm(P)
 For each choice of h^(P), the system of equations (4.19) defines the implicit
 solution {Xm(x, t)} of the system of hydrodynamic type (4.13).
 We proved the following

 Theorem 4.3. Consider the system of hydrodynamic type (4-13), where
 velocities Vm are given by formula (4-17) with arbitrary Holder-continuous
 function and independent of {Xm} functions h(P) and hi(P) on contour I. Let
 hq(P) be another arbitrary and independent of {Xm} Holder-continuous function
 on contour I. Then system of M equations for M variables {Xm(x, t)}m=i

 j>{h(P) + KP)t + h1(P)x}Bm(P) =0, m = 1,..., M, (4.22)
 defines implicit solution {Xm(x, t)} of the system (4-13).

 As before, the condition of Holder continuity of functions h, hi and h^ on
 contour / can be relaxed. Namely, we can substitute the contour I by an arbitrary
 subset of C, and define on this subset three arbitrary measures independent of
 {Am}; the only requirement one needs to impose is commutativity of integration
 in (4.22) with differentiation with respect to {Xm}.

 5. Summary and outlook

 In this paper, we propose a new class of integrable systems of partial differential
 equations associated to spaces of generic rational maps of fixed degree. For maps
 of degree two, such systems give rise to the Ernst equation from general
 relativity; for maps of higher degree, our systems realize the scheme of
 deformation of autonomous integrable systems proposed by Burtsev, Mikhailov
 and Zakharov. We introduce the notion of the tau-function of the new systems,
 and describe their relationship to the matrix Riemann-Hilbert problem and the
 Schlesinger system.
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 1086 A. Kokotov and D. Korotkin

 We generalize our construction to derive integrable systems associated to
 arbitrary Hurwitz spaces HgN of meromorphic functions of degree Non Riemann
 surfaces of genus g> 2.
 When the matrix dimension equals 1, our systems are linear; they can be solved

 via scalar Riemann-Hilbert problem on the Riemann surfaces. Each solution of
 such system corresponds to a flat diagonal metric (Darboux-Egoroff metric),
 together with corresponding systems of hydrodynamic type and their solutions.

 Our results suggest the following directions of future work. We expect our
 systems for g > 2 to be natural deformations of two-dimensional version of
 Hitchin systems proposed in Krichever (2002b). The isomonodromic defor
 mations in higher genus briefly discussed here should be in close relation to
 existing frameworks (Korotkin & Samtleben 1997; Levin h Olshanetski 1997;
 Krichever 2002a), as well as to non-autonomous Hitchin systems (Hitchin 1987).
 All these links should be clarified. The applications of the new systems should
 also be studied, especially from the point of view of their potential relationship
 with structures of Frobenius type.

 Remark 5.1. This work was done in 2001; since then several further
 developments along the lines discussed here have taken place. In Kokotov &
 Korotkin (2004), using the relation (1.12) between rotation coefficients of flat
 metrics corresponding to Hurwitz Frobenius manifolds (Dubrovin 1996) and
 canonical meromorphic bidifferential on Riemann surfaces, it was shown that the
 isomonodromic tau-function of the Hurwitz Frobenius manifolds is closely
 related to the isomonodromic tau-function of matrix Riemann-Hilbert problems
 with quasi-permutation monodromy matrices (Korotkin 2004; Kokotov &
 Korotkin 2006). The canonical meromorphic bidifferential turned out to be a
 very useful tool in description of Dubrovin's Hurwitz Frobenius manifolds.
 Generalization of this formalism by Shramchenko (2005a,b) led to constructions
 of new classes (called 'deformations' and 'real doubles') of Frobenius manifolds
 associated to Hurwitz spaces.

 This paper has also some overlap with the paper by Krichever (2002a),
 devoted to isomonodromy deformations in higher genus, which appeared
 simultaneously with the first version of this text (Kokotov Sz Korotkin 2001).

 Our work on this paper was greatly influenced by Andrej Nikolaevich Tyurin. We thank
 M. Bertola, E. Ferapontov, T. Grava and V. Sokolov for enlightening discussions. This research
 was supported by the grant of Natural Sciences and Engineering Research Council of Canada,
 grant of Fonds pour la Formation de Chercheurs et l'Aide a la Recherche de Quebec and the
 Faculty Research Development Program of Concordia University.
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