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DETERMINANTS OF PSEUDO-LAPLACIANS

Tayeb Aissiou, Luc Hillairet and Alexey Kokotov

Abstract. We derive comparison formulas relating the zeta-regularized determinant of

an arbitrary self-adjoint extension of the Laplace operator with domain C∞
c (X \{P}) ⊂

L2(X) to the zeta-regularized determinant of the Laplace operator on X. Here, X is a
compact Riemannian manifold of dimension 2 or 3; P ∈ X.

1. Introduction

Let Xd be a complete Riemannian manifold of dimension d ≥ 2 and let Δ be the
(positive) Laplace operator on Xd. Choose a point P ∈ Xd and consider Δ as an
unbounded symmetric operator in the space L2(Xd) with domain C∞

c (Xd \{P}). It is
well known that thus obtained operator is essentially self-adjoint if and only if d ≥ 4.
In case d = 2, 3, it has deficiency indices (1, 1) and there exists a one-parameter family
Δα,P of its self-adjoint extensions (called pseudo-laplacians; see [3]). One of these
extensions (the Friedrichs extension Δ0,P ) coincides with the self-adjoint operator
Δ on Xd. In case Xd = Rd, d = 2, 3 the scattering theory for the pair (Δα,P , Δ)
was extensively studied in the literature (see, e.g., [1]). The spectral theory of the
operator Δα,P on compact manifolds Xd (d = 2, 3) was studied in [3], notice also
a recent paper [15] devoted to the case, where Xd is a compact Riemann surface
equipped with Poincaré metric.

The zeta-regularized determinant of Laplacian on a compact Riemannian manifold
was introduced in [11] and since then was studied and used in an immense number of
papers in string theory and geometric analysis, for our future purposes we mention
here the memoir [5], where the determinant of Laplacian is studied as a functional on
the space of smooth Riemannian metrics on a compact two-dimensional manifold, and
the papers [6, 13], where the reader may find explicit calculation of the determinant
of Laplacian for three-dimensional flat tori and for the sphere S3 (respectively).

The main result of the present paper is a comparison formula relating det(Δα,P −
λ) to det(Δ − λ), for λ ∈ C \ (Spectrum(Δ) ∪ Spectrum(Δα,P )) (see Theorem 1 in
Section 4 and Theorem 2 in Section 5).

It should be mentioned that in case of two-dimensional manifolds, the zeta
regularization of det(Δα,P −λ) is not that standard, since the corresponding operator
zeta-function has logarithmic singularity at 0.

It should be also mentioned that in the case when the manifold Xd is flat in a
vicinity of the point P we deal with a very special case of the situation (Laplacian
on a manifold with conical singularity) considered in [8–10] and, via other method,
in [7]. The general scheme of the present work is close to that of [7], although some
calculations from [9] also appear very useful for us.
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2. Pseudo-Laplacians, Krein formula and scattering coefficient

Let Xd be a compact Riemannian manifold of dimension d = 2 or d = 3; P ∈ Xd and
α ∈ [0, π). Following Colin de Verdière [3], introduce the set

D(Δα,P ) = {f ∈ H2(Xd \ {P}) : ∃c ∈ C : in a vicinity of P one has

f(x) = c(sin α · Gd(r) + cos α) + o(1) as r → 0},(2.1)

where
H2(Xd \ {P}) = {f ∈ L2(Xd) : ∃C ∈ C : Δf − CδP ∈ L2(Xd)},

r is the geodesic distance between x and P and

Gd(r) =

⎧
⎪⎨

⎪⎩

1
2π

log r, d = 2,

− 1
4πr

, d = 3.

Then (see [3]) the self-adjoint extensions of symmetric operator Δ with domain
C∞

c (Xd \ {P}) are the operators Δα,P with domains D(Δα,P ) acting via u �→ Δu.
The extension Δ0,P coincides with the Friedrichs extension and is nothing but the
self-adjoint Laplacian on Xd.

Let R(x, y; λ) be the resolvent kernel of the self-adjoint Laplacian Δ on Xd.
Following [3] define the scattering coefficient F (λ; P ) via

(2.2) −R(x, P ; λ) = Gd(r) + F (λ; P ) + o(1)

as x → P . (Note that in [3] the resolvent is defined as (λ−Δ)−1, whereas for us it is
(Δ − λ)−1. This results in the minus sign in (2.2).)

As it was already mentioned the deficiency indices of the symmetric operator Δ
with domain C∞

c (Xd \ {P}) are (1, 1), therefore, one has the following Krein formula
(see, e.g., [1], p. 357) for the resolvent kernel, Rα(x, y; λ), of the self-adjoint extension
Δα,P :

(2.3) Rα(x, y; λ) = R(x, y; λ) + k(λ; P )R(x, P ; λ)R(P, y; λ)

with some k(λ; P ) ∈ C.
The following Lemma relates k(λ; P ) to the scattering coefficient F (λ; P ).

Lemma 1. One has the relation

(2.4) k(λ; P ) =
sin α

F (λ; P ) sin α − cos α
.

Proof. Send x → P in (2.3), observing that Rα( · , y; λ) belongs to D(Δα,P ), make
use of (2.1) and (2.2), and then compare the coefficients near Gd(r) and the constant
terms in the asymptotical expansions at the left and at the right. �

It follows in particular from the Krein formula that the difference of the resolvents
(Δα,P −λ)−1 − (Δ−λ)−1 is a rank one operator. The following simple Lemma is the
key observation of the present work.

Lemma 2. One has the relation

(2.5) Tr
(
(Δα,P − λ)−1 − (Δ − λ)−1

)
=

F ′
λ(λ; P ) sin α

cos α − F (λ; P ) sin α
.
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Proof. One has

−F ′
λ(λ; P ) =

∂R(y, P ; λ)
∂λ

∣
∣
∣
∣
y=P

= lim
μ→λ

R(y, P ; μ) − R(y, P ; λ)
μ − λ

.

Using resolvent identity, we rewrite the last expression as

lim
μ→λ

∫

Xd

R(y, z; μ)R(P, z; λ)dz

∣
∣
∣
∣
y=P

=
∫

Xd

[R(P, z; λ)]2dz.

From (2.3) it follows that

[R(P, z; λ)]2 =
1

k(λ; P )
(Rα,P (x, z; λ) − R(x, z; λ))

∣
∣
∣
∣
x=z

.

This implies

−F ′
λ(λ; P ) =

1
k(λ, P )

Tr
(
(Δα,P − λ)−1 − (Δ − λ)−1

)
,

which, together with Lemma 1, imply (2.5). �

Introduce the domain

Ωα,P = C \ {λ − it, λ ∈ Spectrum (Δ) ∪ Spectrum (Δα,P ); t ∈ (−∞, 0]}.
Then in Ωα,P one can introduce the function

(2.6) ξ̃(λ) = − 1
2πi

log(cos α − F (λ; P ) sin α)

(It should be noted that the function ξ = 	(ξ̃) is the spectral shift function of Δ and
Δα,P .) One can rewrite (2.5) as

(2.7) Tr
(
(Δα,P − λ)−1 − (Δ − λ)−1

)
= 2πiξ̃′(λ).

3. Operator zeta-function of Δα,P

Denote by ζ(s, A) the zeta-function

ζ(s, A) =
∑

μk∈Spectrum (A)

1
μs

k

of the operator A. (We assume that the spectrum of A is discrete and does not contain
0.)

Take any λ̃ from C \ (Spectrum (Δα,P )∪ Spectrum (Δ))). From the results of [3] it
follows that the function ζ(s, Δα,P − λ̃) is defined for sufficiently large 	s. It is well
known that ζ(s, Δ − λ̃) is meromorphic in C.

The proof of the following lemma coincides verbatim with the proof of Proposition
5.9 from [7].

Lemma 3. Suppose that the function ξ̃′(λ) from (2.7) is O
(|λ|−1

)
as λ → −∞. Let

−C be a sufficiently large negative number and let cλ̃,ε be a contour encircling the
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cut cλ̃ which starts from −∞ + 0i, follows the real line till −C and then goes to λ̃
remaining in Ωα,P . Assume that dist (z, cλ̃) = ε for any z ∈ cλ̃,ε. Let also

ζ2(s) =
∫

cλ̃,ε;2

(λ − λ̃)−sξ̃′(λ)dλ,

where the the integral at the right-hand side is taken over the part cλ̃,ε;2 of the contour
cλ̃,ε lying in the half-plane {λ : 	λ > −C}. Let

ζ̂2(s) = lim
ε→0

ζ2(s) = 2i sin(πs)
∫ λ̃

−C

(λ − λ̃)−s
0 ξ̃′(λ) dλ,

where (λ − λ̃)−s
0 = e−iπs limλ↓cλ̃

(λ − λ̃)−s. Then the function

(3.1) R(s, λ̃) = ζ(s, Δα,P − λ̃)) − ζ(s, Δ − λ̃) − 2i sin(πs)
∫ −C

−∞
|λ|−sξ̃′(λ)dλ − ζ̂2(s)

can be analytically continued to 	s > −1 with R(0, λ̃) = R′
s(0, λ̃) = 0.

For completeness, we give a sketch of proof.

Proof. Using (2.7), one has for sufficiently large 	s

ζ(s, Δα,P − λ̃) − ζ(s, Δ − λ̃) =
1

2πi

∫

cλ̃,ε

(λ − λ̃)−sTr((Δα,P − λ)−1 − (Δ − λ)−1)dλ

=
∫

cλ̃,ε

(λ − λ̃)−sξ̃′(λ) dλ = ζ1(s) + ζ2(s),

where

ζ1(s) =

{∫ −C+iε

−∞+iε

−
∫ −C−iε

−∞−iε

}

(λ − λ̃)−sξ̃′(λ)dλ.

It is easy to show (see Lemma 5.8 in [7]) that in the limit ε → 0 ζ1(s) gives

(3.2) 2i sin(πs)
∫ −C

−∞
|λ|−sξ̃′(λ) dλ + 2i sin(πs)

∫ −C

−∞
|λ|−sξ̃′(λ)ρ(s, λ̃/λ)dλ,

where ρ(s, z) = (1 + z)−s − 1 and

ρ(s, λ̃/λ) = O
(|λ|−1

)
,

as λ → −∞. Using the assumption on the asymptotics of ξ̃(λ) as λ → −∞ and the
obvious relation ρ(0, z) = 0, one can see that the last term in (3.2) can be analytically
continued to 	s > −1 and vanishes together with its first derivative with respect to
s at s = 0. Denoting it by R(s, λ̃), one gets the Lemma. �

As it is stated in the introduction the main object, we are to study in the present
paper is the zeta-regularized determinant of the operator Δα,P −λ. Let us remind the
reader that the usual definition of the zeta-regularized determinant of an operator A

(3.3) detA = exp (−ζ ′(0, A))

requires analyticity of ζ(s, A) at s = 0.
Since the operator zeta-function ζ(s, Δ− λ̃) is regular at s = 0 (in fact, it is true in

case of Δ being an arbitrary elliptic differential operator on any compact manifold)



DETERMINANTS OF PSEUDO-LAPLACIANS 1301

and the function ζ̂2(s) is entire, Lemma 3 shows that the behavior of the function
ζ(s, Δα,P − λ̃) at s = 0 is determined by the properties of the analytic continuation
of the term

(3.4) 2i sin(πs)
∫ −C

−∞
|λ|−sξ̃′(λ)dλ

in (3.1). These properties in their turn are determined by the asymptotical behavior
of the function ξ̃′(λ) as λ → −∞.

It turns out that the latter behavior depends on dimension d. In particular, in the
next section, we will find out that in case d = 2 the function ζ(s, Δα,P − λ̃) is not
regular at s = 0; therefore, in order to define det(Δα,P − λ̃) one has to use a modified
version of (3.3).

4. Determinant of pseudo-Laplacian on two-dimensional compact
manifold

Let X be a two-dimensional Riemannian manifold, then introducing isothermal local
coordinates (x, y) and setting z = x + iy, one can write the area element on X as

ρ−2(z)|dz|2.
The following estimate of the resolvent kernel, R(z′, z; λ), of the Laplacian on X

was found by Fay (see [5]; Theorem 2.7 on page 38 and the formula preceding Corollary
2.8 on page 39; note that Fay works with negative Laplacian, so one has to take care
of signs when using his formulas).

Lemma 4 (J. Fay). The following equality holds true

−R(z, z′; λ)) = G2(r) + O(r) +
1
2π

[

γ + log

√|λ| + 1
2

(4.1)

− 1
2(|λ| + 1)

(

1 +
4
3
ρ2(z)∂2

zz̄ log ρ(z)
)

+ R̂(z′, z; λ)

]

,

where O(r) is λ-independent, R̂(z′, z; λ) is continuous for z′ near z,

R̂(z, z;λ) = O
(|λ|−2

)

uniformly with respect to z ∈ X as λ → −∞; r = dist(z, z′), γ is the Euler constant.

Using (4.1), we immediately get the following asymptotics of the scattering
coefficient F (λ, P ) as λ → −∞:

F (λ, P ) =
1
4π

log(|λ| + 1) +
γ − log 2

2π
(4.2)

− 1
4π(|λ| + 1)

[

1 +
4
3
ρ2(z)∂2

zz̄ log ρ(z)
∣
∣
∣
∣
z=z(P )

]

+ O
(|λ|−2

)
.

Remark 1. It is obvious that the expression ρ2(z)∂2
zz̄ log ρ(z)

∣
∣
z=z(P )

is independent
of the choice of conformal local parameter z near P .
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Now from (2.6) and (4.2) it follows that

2πiξ̃′(λ) = −
1

4π(|λ|+1) − b
(|λ|+1)2 + O

(|λ|−3
)

cot α − a − 1
4π log(|λ| + 1) + b

|λ|+1 + O (|λ|−2)
,

where a = 1
2π (γ − log 2) and b = 1

4π (1 + 4
3ρ2∂2

zz̄ log ρ). This implies that for
−∞ < λ ≤ −C, one has

(4.3) 2πiξ̃′(λ) =
1

|λ|(log |λ| − 4π cot α + 4πa)
+ f(λ),

with f(λ) = O
(|λ|−2

)
as λ → −∞. Now knowing (4.3), one can study the behavior

of the term (3.4) in (3.1). We have

2i sin(πs)
∫ −C

−∞
|λ|−sξ̃′(λ)dλ =

sin(πs)
π

∫ −C

−∞
|λ|−s−1 dλ

(log |λ| − 4π cot α + 4πa)
(4.4)

+
sin(πs)

π

∫ −C

−∞
|λ|−sf(λ) dλ.

The first integral in the right hand side of (4.4) appeared in ([9], p. 15), where it
was observed that it can be easily rewritten through the function

Ei(z) = −
∫ ∞

−z

e−y dy

y
= γ + log(−z) +

∞∑

k=1

zk

k · k!
,

which leads to the representation

sin(πs)
π

∫ −C

−∞
|λ|−s−1 dλ

(log |λ| − 4π cot α + 4πa)
(4.5)

= − sin(πs)
π

e−sκ [γ + log(s(log C − κ)) + e(s)] ,

where e(s) is an entire function such that e(0) = 0; κ = 4π cot α− 4πa. From this we
conclude that

(4.6)
sin(πs)

π

∫ −C

−∞
|λ|−s−1 dλ

(log |λ| − 4π cot α + 4πa)
= −s log s + g(s),

where g(s) is differentiable at s = 0.
Now (3.1) and (4.6) justify the following definition.

Definition 1. Let Δα,P be the pseudo-Laplacian on a two-dimensional compact
Riemannian manifold. Then the zeta-regularized determinant of the operator Δα,P −λ̃

with λ̃ ∈ C \ Spectrum(Δα,P ) is defined as

(4.7) det(Δα,P − λ̃) = exp
{

− d

ds

[
ζ(s, Δα,P − λ̃) + s log s

]∣
∣
∣
s=0

}

.

We are ready to get our main result: the formula relating det(Δα,P − λ̃) to
det(Δ − λ̃).
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From (3.1), (3.4) it follows that

d

ds

[
ζ(s, Δα,P − λ̃) + s log s − ζ(s, Δ − λ̃)

]∣
∣
∣
s=0

(4.8)

=
d

ds
ζ̂2(s)

∣
∣
∣
∣
s=0

+
∫ −C

−∞
f(λ) dλ

− d

ds

{
sin πs

π
e−sκ [γ + log(s(log C − κ)) + e(s)] + s log s

}∣
∣
∣
∣
s=0

= 2πi
(
ξ̃(λ̃) − ξ̃(−C)

)
+

∫ −C

−∞
f(λ) dλ − γ − log(log C − κ)

= ×2πiξ̃(λ̃) − γ

+
∫ −C

−∞
f(λ) dλ − 2πiξ̃(−C) − log(log C − 4π cot α + 2γ − log 4).

Note that the expression in the second line of (4.8) should not depend on C, so one
can send C to +∞ there. Together with (4.2) this gives

d

ds

[
ζ(s, Δα,P − λ̃) + s log s − ζ(s, Δ − λ̃)

]∣∣
∣
∣
s=0

= 2πiξ̃(λ̃)− γ + log(sin α/(4π))− iπ,

which implies the comparison formula for the determinants stated in the following
theorem.

Theorem 1. Let d = 2, suppose λ̃ does not belong to the union of spectra of Δ and
Δα,P and let the zeta-regularized determinant of Δα,P be defined as in (4.7). Then
one has the relation

(4.9) det(Δα,P − λ̃) = −4πeγ(cot α − F (λ̃, P ))det(Δ − λ̃).

Observe now that 0 is the simple eigenvalue of Δ and, therefore, it follows from
Theorem 2 in [3] that 0 does not belong to the spectrum of the operator Δα,P and that
Δα,P has one strictly negative simple eigenvalue when α �= 0. Thus, the determinant
in the left-hand side of (4.9) is well defined for λ̃ = 0, whereas the determinant at the
right-hand side has the asymptotics

(4.10) det(Δ − λ̃) ∼ (−λ̃)det∗Δ

as λ̃ → 0−. Here det∗Δ is the modified determinant of an operator with zero mode.
From the standard asymptotics

−R(x, y; λ) =
1

Vol(X)
1
λ

+ G2(r) + O(1)

as λ → 0 and x → y one gets the asymptotics

(4.11) F (λ, P ) =
1

Vol(X)
1
λ

+ O(1)

as λ → 0. Now sending λ̃ → 0− in (4.9) and using (4.10) and (4.11) we get the
following corollary of the Theorem 1.
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Corollary 1. For α ∈ (0, π) the following relation holds true:

(4.12) detΔα,P = − 4πeγ

Vol(X)
det∗Δ.

5. Determinant of pseudo-Laplacian on three-dimensional manifolds

Let X be a three-dimensional compact Riemannian manifold. We start with the
Lemma describing the asymptotical behavior of the scattering coefficient as λ → −∞.

Lemma 5. One has the asymptotics

(5.1) F (λ; P ) =
1
4π

√−λ + c1(P )
1√−λ

+ O
(|λ|−1

)
,

as λ → −∞
Proof. Consider Minakshisundaram–Pleijel asymptotic expansion [12]

(5.2) H(x, P ; t) = (4πt)−3/2 e−d(x,P )2/(4t)
∞∑

k=0

uk(x, P )tk

for the heat kernel in a small vicinity of P , here d(x, P ) is the geodesic distance from
x to P , functions uk(·, P ) are smooth in a vicinity of P , the equality is understood in
the sense of asymptotic expansions. We will make use of the standard relation

(5.3) R(x, y; λ) =
∫ +∞

0

H(x, y; t)eλt dt.

Let us first truncate the sum (5.2) at some fixed k = N + 1, so that the remainder,
rn, is O

(
tN

)
. Defining

R̃N (x, P ;−λ) :=
∫ ∞

0

rn(t, x, P )etλdt,

we see that
R̃N (x, P ; λ) = O

(
|λ|−(N+1)

)

as λ → −∞ uniformly with respect to x belonging to a small vicinity of P .
Now, for each 0 ≤ k ≤ N + 1 we have to address the following quantity

Rk(x, P ; λ) :=
uk(x, y)
(4π)3/2

∫ ∞

0

tk−
3
2 e−

d(x,P )2

4t eλtdt.

According to identity (5.12) below, one has

(5.4) R0(x, P ; λ) =
u0(x, P )
(4π)3/2

2
√

π

d(x, P )
e−d(x,P )

√−λ =
1

4πd(x, P )
− 1

4π

√−λ + o(1),

as d(x, P ) → 0. For k ≥ 1 one has

Rk(x, P ; λ) =
uk(x, P )
(4π)3/2

23/2−k

(
d(x, P )√−λ

)k−1/2

Kk− 1
2
(d(x, P )

√−λ)(5.5)

= −ck(P )
1

(
√−λ)2k−1

+ o(1)

as d(x, P ) → 0 (see [2], p. 146, f-la 29). Now (5.1) follows from (5.3) to (5.5). �
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Now from Lemma 5 it follows that

(5.6) 2πiξ̃′(λ) = − 1
2λ

+ O
(
|λ|−3/2

)

as λ → −∞, therefore, one can rewrite (3.4) as

(5.7)
sin(πs)

π

{∫ −C

−∞
|λ|−s

(

2πiξ̃′(λ) +
1
2λ

)

dλ +
C−s

2s

}

,

which is obviously analytic in 	s > −1
2 . Thus, it follows from (3.1) that the function

ζ(s, Δα,P − λ̃) is regular at s = 0 and one can introduce the usual zeta-regularization

det(Δα,P − λ̃) = exp{−ζ ′(0,Δα,P − λ̃)}
of det(Δα,P − λ̃).

Moreover, differentiating (3.1) with respect to s at s = 0 similarly to (4.8) we get

d

ds

[
ζ(s, Δα,P − λ̃) − ζ(s, Δ − λ̃)

]∣∣
∣
∣
s=0

= 2πi(ξ̃(λ̃) − ξ̃(−C)) +
∫ −C

−∞

(

2πiξ̃′(λ) +
1
2λ

)

dλ − 1
2

log C,

which reduces after sending −C → −∞ to

2πiξ̃(λ̃) + log sin α − log(4π) + iπ = − log(cot α − F (λ; P )) − log(4π) + iπ,

which implies the following theorem.

Theorem 2. For d = 3 let Δα,P be the pseudo-Laplacian on X and λ̃ ∈ C \
(Spectrum(Δ) ∪ Spectrum(Δα,P )). Then

(5.8) det(Δα,P − λ̃) = −4π(cot α − F (λ̃; P ))det(Δ − λ̃).

Sending λ̃ → 0 and noting that relation (4.11) holds also in case d = 3, we get the
following corollary.

Corollary 2. For α ∈ (0, π)

(5.9) detΔα,P = − 4π

Vol(X)
det∗Δ.

In what follows, we consider two examples of three-dimensional compact Riemann-
ian manifolds for which there exist explicit expressions for the resolvent kernels: a flat
torus and the round (unit) 3d-sphere. These manifolds are homogeneous, so, as it is
shown in [3], the scattering coefficient F (λ, P ) is P -independent.

Example 1: Round 3d-sphere.

Lemma 6. Let X = S3 with usual round metric. Then there is the following explicit
expression for scattering coefficient

(5.10) F (λ) =
1
4π

coth
(
π
√−λ − 1

)
· √−λ − 1
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and, therefore, one has the following asymptotics as λ → −∞ :

(5.11) F (λ) =
1
4π

√
|λ| − 1 + O

(|λ|−∞)
.

Remark 2. The possibility of finding an explicit expression for F (λ) for S3 was
mentioned in [3]. However, we failed to find (5.10) in the literature.

Proof. We will make use the well-known identity (see, e.g., [2], p. 146, f-la 28):

(5.12)
∫ +∞

0

eλtt−3/2 e−
d2
4t dt = 2

√
π

|d| e−|d|√−λ;

for λ < 0 and d ∈ R and the following explicit formula for the operator kernel
e−tH(x, y; t) of the operator e−t(Δ+1), where Δ is the (positive) Laplacian on S3

(see [4], (2.29)):

(5.13) e−tH(x, y; t) = − 1
2π

1
sin d(x, y)

∂

∂z

∣
∣
∣
∣
z=d(x,y)

Θ(z, t).

Here, d(x, y) is the geodesic distance between x, y ∈ S3 and

Θ(z, t) =
1√
4πt

+∞∑

k=−∞
e−(z+2kπ)2/4t

is the theta-function.
Denoting d(x, y) by θ and using (5.13) and (5.12), one gets

R(x, y; λ − 1) =
∫ +∞

0

eλt e−tH(x, y; t) dt(5.14)

=
1
4π

1
sin θ

⎛

⎝−
∑

k<0

e(θ+2kπ)
√−λ +

∑

k≥0

e−(θ+2kπ)
√−λ

⎞

⎠

=
1
4π

1
sin θ

1
1 − e−2π

√−λ

[
−e−2π

√−λeθ
√−λ + e−θ

√−λ
]

=
1

4πθ
− 1

4π

1 + e−2π
√−λ

1 − e−2π
√−λ

√−λ + o(1)

as θ → 0, which implies the Lemma. �

Example 2 (flat 3d-tori). Let {A,B,C} be a basis of R
3 and let T 3 be the

quotient of R
3 by the lattice {mA+nB+ lC : (m, n, l) ∈ Z

3} provided with the usual
flat metric.

Note that the free resolvent kernel in R3 is

e−
√−λ‖x−y‖

4π‖x − y‖
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and, therefore,

(5.15) R(x, y; λ) =
e−

√−λ‖x−y‖

4π‖x − y‖ +
1
4π

∑

(m,n,l)∈Z3\(0,0,0)

e−
√−λ‖x−y+mA+nB+lC‖

‖x − y + mA + nB + lC‖ .

From (5.15) it follows that

F (λ) =
1
4π

√−λ − 1
4π

∑

(m,n,l)∈Z3\(0,0,0)

e−
√−λ‖mA+nB+lC‖

‖mA + nB + lC‖

=
1
4π

√−λ + O
(
|λ|−∞

)

as λ → −∞.

Remark 3. It should be noted that explicit expressions for det∗Δ in case X = S3

and X = T 3 are given in [13] and [6].
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