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Abstract

We compute the genus one correction to free energy of Hermitian two-matrix model ilNarge
limit in terms of theta-functions associated to the spectral curve. We discuss the relationship of this
expression to the isomonodromic tau-function, the Bergmann tau-function on Hurwitz spaces, the
G-function of Frobenius manifolds and the determinant of Laplacian in a singular metric over the
spectral curve.
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1. Two-matrix models: introduction

In this paper we study the partition function of the multi-cut two-matrix m¢d&]:
ZN = e*NzF = /dMldM2e*Ntl’{Vl(Ml)‘l*Vz(Mz)fMle}’ (11)

where the integral is taken over all independent entries of two Hermitian matficesd

M5 such that the eigenvalues #f; are concentrated over a finite set of intervals (cuts)
with given filling fractions. According to wdely accepted point of view, we understand
the integral(1.1) as a formal asymptotic series with respect to powers of the matrix size
N and the coefficients of the polynomial potenti&sand V. Therefore, here we do not
discuss problems related to convergence of tlagixintegral; moreover, being interpreted
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in the formal sense, the model can be easily extended to matrices whose eigenvalues are
concentrated on a set of contours in the complex plane.

The asymptotic serie =Y ~5_oN —2G G with respect to the powers of/ N2 play
an important role in physics. In particular, the coefficief®$ of these series can be
interpreted as generating functions of statistical physics models on random discretized
polygonal surfaces of genus, which are used as simplified models of euclidean 2D
guantum gravity3,4,6]; thus an expansion of this kind is called “topological expansion”.
Double scaling limits of these models correspond to statistical physics models on
continuous surfaces, with conformal invarianceperties. According to this philosophy,
the Hermitian one-matrix model corresponds to pure gravity (ges 2), while the
Hermitian two-matrix models correspond to gll, ¢) minimal models.

The interest to larg&v matrix models was renewed after recent discovery of a close
relationship between the largé expansion of the free energy of matrix models and the
low-energy effective actio of some string theorig27].

The computation of AN? expansion for both one-matrix and two-matrix models is
based on the loop equations, which were first derived for the one-cut solution of the
Hermitian one-matrix model if8]. For the two-cut case of the one-matrix model, when the
spectral curve has genus one, the loop equations were derived in the[@&di®s where
F1 was also found. The larg¥ expansion for the one-matrix model in the multi-cut case
was discussed in recent papgr$—13] whereF! was computed in terms of holomorphic
objects associated to the hyperelliptic spectral curve.

The loop equations for the Hermitian two-matrix model were derived in widkgdl 5]
of one of the authors of this paper; in these works the genus one corrdctiom the
free energy was computed for the spectralvesrof genus zero (“one-cut” case) and one
(“two-cut” case).

In this paper we extend the results of the wofk4,15]to “multi-cut” case, when the
genus of the spectral curve is arbitrary (up to the maximal genus, which can be computed
in terms of degrees of polynomialg andV5).

Let us write down the polynomialig; and Vs, in the form

d1+1 - do+1 -
w =3 St v = )0 ok (1.2)
k=1 k=1

We shall use the following standard notations for the operators of differentiation with
respect to coefficients of these polynomials:
di+1 do+1

=Yy kd,,. (1.3)
k=1

X

5 §
= Z xik*lkauk,
i |, & 5V2(») |,

This notation will be used below to shorten some of the formulas; by definition the equality

oF
= H(x)
dVix) |,
means that
oF 1
— == ?g FH@x)dx, k=1,....di+1; (1.4)
ourp 2mik

X=00
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a detailed discussion of this notation is containeflifi. In fact, formally it is much more
convenient not to cut the functiong andV; to polynomials, but to consider instead the
Laurent series

o0 o0
i =3 - Ve =3 (.5)
k=1 k=1
In this case the formal relations
sV 1 sV/ 1
o _ 1 10 __1 (1.6)
sVi(x) x—x SVi(x¥)  (F —x)?

take place, which are used in the derivation of the loop equation. However, here we consider
the polynomial case and understand all relations involving the oper&té¥g (x) and
8/8V2(y) in the sense ofl.4).

Consider the resolvents (also understood as formal power series)

W(x)=%<tr 1M1> and W(y)=%<tr ! > 1.7)

y—M>
As a corollary of(1.6), the free energy of the two-matrix modél1)satisfies the following
equations with respect to the coefficients of the polynoiial

OF -
- W), 1.8
5Va(x) sva - V) 18

which are also valid in the senseBfs. (1.4)

Assuming existence of the/ /2 expansion, the highest order contributiBhito the free
energy was found usiriggs. (1.8)n [16]; it was computed in terms of holomorphic objects
associated to the “spectral curve” which arisesvin> oo limit. The next coefficient!
was found in[14] for the case when the spectral curve has genus zero, d@8]ifor the
case when the genus equals one.

The main result of this paper is an expressionfdrfor an arbitrary genus of “spectral
curve”. We computeF! in terms of algebro-geometric aijts associated to the spectral
curve using the loop equations.

The spectral curve is defined by the following equation:

E%x, y) == (V{(x) — y)(V4(3) — x) = PO(x, ) +1=0, (1.9)

where the polynomial of two variableB®(x, y) is the zeroth order term in the/&?
expansion of the polynomial

1 <tr Vi) — ViM) Vi) — VZ/(M2>>
N X — M]_ y— M2

the pointP of this curve is a pair of complex numbeps, y) satisfying(1.9).

The spectral curv€l.9) arises together with two meromorphic functiofisP) = x
and g(P) = y, which project it down tax and y-planes, respectively. These functions
have poles only at two points a, calledoo; andoo,: at ooy the function f(P) has
a simple pole, and the functiop( P) has a pole of orded; with singular part equal
to V/(f(P)). At the pointoo, the functiong(P) has a simple pole, and the function

W(x),

Px,y):=

; (1.10)
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f(P) has a pole of ordef, with singular part equal t&;(¢(P)). Therefore, we naturally
obtain the moduli spaca of triples (L, f, g), where functionsf and g have the pole
structure described above. The natural coordinates on this moduli space can be chosento be
coefficients of polynomial®¥; and V>, and additional numbers, called “filling fractions”
€y = 27'[1 f gdf,wherea, are (chosen in some way) canoniaatycles on..

Denote the zeros of the differentiéf by P1, ..., Py, (m1=d>+2g+ 1) (these points
play the role of the ramification points if we realize the spectral cuives a branched
covering of complex-plane); the projections of the ramification points on thplane are
called the branch points, which we denotelgy:= f(P;). The zeros of the differential
dg (the ramification points corresponding to representation of the spectral fuagea
covering of the complex plane defined by the functig®)) we denote byQ1, ..., O,
(m2 = d1 + 2g + 1); their projections on the-plane (the branch points) we denote by
wj = g(Q;). We shall assume that the pair of potentié{sand V> is generic, i.e., all the
zeros of the differentialdf anddg are simple and distinct.

If is well known [16] how to express all standard algebro-geometrical object£ on
in terms of the previous data. In particular, the canonical meromorphic bidifferential
B(P,Q)=dpdpInE(P, Q) (E(P, Q) is the prime-form) can be represented as follows:

8g(P)
B(P, Q) VIO | o) df (P)df(Q) (1.11)
(see[16] for the proof); the bidifferentiaB(P, Q) is symmetric and has a quadratic pole
on the diagonaP — Q with the following local behavior:

B(P, Q)= { + 1SB(P) +0(1)}dZ(P)dZ(Q) (1.12)

(z(P) —2(0))?
where z(P) is some local coordinateSp(P) is the Bergmann projective connection
(Sp(P) transforms as a quadratic differential under Mobius transformations of the local
coordinate; an appropriate Schwarzian derivative term is added to the projective connection
if one makes an arbitrary transformation of the local coordinate).

Consider also the four-differenti@d(P, Q) = dpdg In E(P, Q), which has on the di-
agonal a pole of the 4th degre@(P, Q) = {6(z(P) — z(0)) " *+ 0 (1)} dz(P) (dz(Q))3.
FromB(P, Q) andD(P, Q) itis easy to construct meromorphic normalized faperiods
vanish) 1-forms orC with single pole; in particular, if the pole coincides with ramification
point P, the natural local parameter neBy is given byx,(P) = +/f(P) — Ax. Then the
following objects:

B(P. 0) ., D(P Py = 2O (1.13)

dxi(Q) | gp, ’ (dxi(2))3 | g=p,

are meromorphic normalized 1-forms @hwith a single pole at the poin®; and the
following singular parts:

B(P, Py) :=

B(P, Py) = + 1SB(Pk)+0(1)}dxk(P)

1
|
6
D(P,Pk):{ (P)4+0(1)}dxk(P) (1.14)
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asP — P, whereSg(Py) is the Bergmann projective coaation computed at the branch
point P, with respect to the local parameten P).

In the order ¥N? Egs. (1.8)look as follows (we write down only the equations with
respect to the coefficients of the polynomia):

SF1
— = -vi(p), (1.15)
Va(f(P))
whereY? is the I/ N? contribution to the resolvent. The functiony® can be computed
using the loop equatiorj$4], which leads to the following expression:

YD (Pydf(p)

mi

8" (Py) S (Py)

= -~ D(P, _
,;1{ 965 (P ")+[96g’2<Pk> 245'(P)

:|B(P, Pk)}. (1.16)

The solution ofEgs. (1.15), (1.16)hich is invariant with respect to the projection change
(i.e., which satisfies also the required equations with respect to the coefficients of the
polynomialV>), looks as follows:

1 11 do+3
Fl= Z—Alln{r}z(vdﬁl) a Hdg(Pk)} +— Indo, (1.17)
k=1

wherery is the so-called Bergmann tau-funation the Hurwitz space. The Bergmann
tau-function is defined as the (unique up to an additive constant) solution of the following
system of equations with respect to the branch padipts

—|n‘l.'f=—iSB(Pk). (1.18)

The Bergmann tau-functio(il.18) appears in many important problems: it coincides
with the isomonodromic tau-function of Hurwitz Frobenius manifo]#i8], and gives
the main contribution to thes-function (the solution of Getzler equation) of these
Frobenius manifolds; it gives the most non-trivial term in the Jimbo—Miwa tau-function
corresponding to a Riemann-Hilbert pretsl with regular singularities and quasi-
permutation monodromies. Finally, its modulus square essentially coincides with the
determinant of Laplace operator in metriggh conic singularities over Riemann surfaces
[19]. The solution of the systeifd.18)was found in20] and can be described as follows.
Introduce the divisofd f) = —200 5 — (d2+1)00, + > 124 P := k’”:11“2 rDy. Choose
some initial pointP € £ and consider the vector of Riemann constaifs and the Abel
mapA, (Q) = fPQ wq (w, are normalized holomorphic 1-forms d). Since all the zeros

of the differentialdf have multiplicity 1, we can always choose the fundamental£ell

of the universal covering of the spectral curgen such a way thad((df)) = —2K”

(for an arbitrary choice of the fundamental domain these two vectors coincide only up to
an integer combination of the periods of the holomorphic differentials); the Abel map is
computed along a path which does not intersect the bounda@y of
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The main ingredient of the Bergmann tau-function is the following holomorphic
multivaluedg (1 — g)/2-differentialC(P) on L:

1 Zg: $O(KPD)

P):=——— o (P) ... wg, (P), 1.19
(P) WP _lazal._.az%w 1(P) .. wg, (P) (1.19)
2T ag= 8
where
W(P):= det [w@ P 1.20
(P =, det Juf V)] (1.20)

denotes the Wronskian determinant of the holomorphic differentials. Introduce also the
quantity @ defined by the expression

m+2 A-g)r

cP) [[[EP.DO] 7 (1.21)

k=1

this combination is independent of the poiht £. Then the Bergmann tau-functi¢h 18)
on the Hurwitz space is given by the following expression:

g—1

Q=[df(P)]

m+n

tr=0° [] [EWDw D]

k=1 k<l

Tkl
6
K

(1.22)

together with(1.17)this gives a formula for the genus one correction in Hermitian two-
matrix model.

If the potentialV, is quadratic, the integration with respecti in (1.1)can be taken
explicitly, and the free energiL.17)gives rise to the free energy of one-matrix model. The
spectral curve in this case becomes hyperelliptic, and the forn{tlla 7)turns into (after
using the expression fat; obtained in23])

1 2g+2
Fl== In{A3(detA)12 I g’(,\k)}, (1.23)
24
k=1
whererr, k=1, ..., 2¢g+ 2, are the branch points @f, A is their Wronskian determinant;
A is the matrix ofa-periods of the non-normalized holomorphic differentialston
The paper is organized as follows.$ection 2 following [14], we write down the loop
equations for the two-matrix model, and discuss the spectral curve and associated objects
which arise in the zeroth order iry N2 expansion. Here we derive also new variational
formulas, which will be used later in computation ofNi? correction to free energy.
In Section 3we solve the loop equations iry X2 approximation. Here we also express
F1in terms of the Bergmann tau-futien on Hurwitz spaces introduced [t8,26] In
Section 4we recall an explicit expression for the Bergmann tau-fund2@j, and find its
transformation law under the change of projection of the spectral curve. This allows to get
a formula for F1 which satisfies the full set of variational equations with respect to the
coefficients of the polynomial¥; and V. In Section 5we derive variational equations
of F1 with respect to filling fractions. IiSection 6we discuss the links betwedn! and
other related objects: the determinant of Laplace operatorGtfienction of Frobenius
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manifolds and the isomonodromic tau-function of Fuchsian system with quasi-permutation
monodromies. Finally, ifSection 7we consider the simplest partial cases, when the
spectral curve is either rational (“one-cut” case) or elliptic (“two-cut” case); here we also
describe reduction to the one-matrix model.

2. Loop equations: theleading term

Introduce the function

Y(x) = V{(x) = W(x). (2.1)
In terms of the functiorY Egs. (1.8)or the free energy can be written as follows:
SF
——— =V{(x) = Y(x); 2.2
AT 1(x) =Y (x) (2.2)

as well aq1.8), these equations are valid in the sensélo).

To make use of the variational formu{a.2) we need to get some information about
the functionY (x). This information is in principle contained in the loop equations, which
follow from the reparametrization invariance of the partition functidrl) (see[14] for
details). To write down the loop equations, in addition to the resolvént) (1.7), we
need to introduce the following objects:

e the polynomialP(x, y):

1 Vilx) = Va(My) Va(y) — Va(M) \
Px,y):= N<tf My y— My > (2.3)
e the polynomiak(x, y)
E(x,y) = (Vi(x) — y)(Va(y) —x) = P(x, y) + 1; (2.4)
e the functionl{(x, y), which is a polynomial iry:
Vo(y) — VoM
Ux, y) = i<tr 1 Vo0 = Vol 2)>; (2.5)
N\ x—M; y— M
e the functionl{(x, y, z), which is also a polynomial in:
_dU(x, y)
Ux,y,z) 3V1G)
_ 1 Vo(y) — Vo(My) 1 2
_<trx—M1 R trZ_Ml>—N Ux, y)W(z). (2.6)

Now we can write down the loop equation

Ex,y) 1 Ux,y,x)
y=Y(x) N2y—Y(x)’
which arises as a corollary of the reparametrization invariance of the matrix in{égtal
[14].

Ux,y)=x — Vy(y) +

2.7)
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The residue of2.7)at y = Y (x) leads to the following loop equation (for polynomials
of degree 3 this equation was first derived5t) for the functiony (x) := Vj(x) — W(x):

Eo(x, Y(x)) = %Z/{(x, Y(x),x). (2.8)

To use the loop equations effectively we need to consider th& Expansion of all their
ingredients.

2.1. Leading order term: algebro-geometric framework
Assume that the functioli admits an expansion into a power series iiv#:
1
Y(x)=Y0~|—mY1~|—-~-. (2.9)

Then the master loop equati¢?8)in the leading order turns into an algebraic equation in
two variablesx andY @ (x):

E(x, Y0)) =
where
%, y) = (V{(x) — y) (V5(») — x) = POx, y) + L. (2.10)

The polynomial equation
&%, y)=0 (2.11)

defines an algebraic curvg, which we call “spectral curve”; denote its genus pyif
the spectral curve is non-singular, it has “maximal genus” equahth — 1); a point
P of this curve is a pair of complex numbegs, y) satisfying the polynomial equation
(2.11) Therefore,Y© can be considered as a multi-valued functionxofThe curvel
is naturally equipped with two memorphic functions: the functiorf (P) = x and the
functiong(P) =y (= Y%x)). Since the polynomiaP (2.3)and the functiorf (2.4)are
symmetric with respect to the substitutian< y, V1 < V>, the same algebraic curve
appears if we write down the loop equations #ofy) := V;(y) — 5\(/“? 5

Analytical properties of the functiong(P) andg(P) on L are weII known (se¢l6,
17] and references therein). Namelg( P) and g(P) are meromorphic functions o
having poles only at the marked points; andoo, with the following pole structure: the
function f (P) has a simple pole ab ; and a pole of ordef; atoo,; the functiong (P) has
a simple pole ato, and a pole of ordet; at oo r. Therefore, neaso ; we can write down
the singular part of (P) as a polynomial off (P); nearoo, we can represent the singular
part of f(P) as a polynomial of(P); the coefficients of these polynomials coincide with
the coefficients of the polynomialg andV,, respectively:

) 1

g(P)=V{(f(P)) - Q) +O0(f3(P)) asP — ooy, (2.12)
1

f(P)=Vj(g(P)) — ——+ 0(g 2(P)) asP — oo,. (2.13)

g(P)
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The dimension of the moduli space of triples, f, g) satisfying these conditions equals
di+do+ g+ 2.

Let us choose o a canonical basis of cyclé€s,, b,). Then coordinates on the space
M can be chosen as follows:

e d1+ 1 coefficientsuy, . .., ug, 41 of the polynomialvj;
e do + 1 coefficientsvy, ... ., vg,+1 Of the polynomialV,;
o “filling fractions”
1
€q = — P gdf. (2.14)

2mi
Ay

In strictly physical situation the potential§ and V> should be such that, considering
L as a branched covering defined by the functfgnone can single out the “physical”
sheet (which includes the poinb ;) such that allz-cycles lie on this sheet and eagh
cycle encircles exactly one branch cut (all corresponding branch points must be real if
the potentialsi, and V, are real). Similar requirement comes from throjection of
L. However, here we do not impose these “physical” requirements, i.e., we consider the
“analytical continuation” of the physical sector, in the spirif®7].

Nevertheless, the sheet of the cuigrealized agd> + 1)-sheeted branched covering
by function f), which contains the pointo ¢, is called the “physical” sheet; the physical
sheet is well-defined at least in some neighborhoagbet Fixing some splitting of into
d» + 1 sheets, we denote by® (k =1,...,d> + 1) the point of£ belonging to thekth
sheet such thaf (x®)x = x; we assume that the point? belongs to the physical sheet
of £,ie.,x® — 00 asx — 0o.

The polynomial€®(x, y) defining the spectral curvé (2.11)can also be rewritten as
follows:

do+1

%, y)=—vapr1 [[ b — g(x®)). (2.15)
k=1

The proof of(2.15)is simple: the functio£? is given by(2.10) sinceP? is a polynomial
of degreed, — 1 with respect toy, the function£? is a polynomial of degred; + 1 in y;
its zeros are given by %(x®)) according to the definition of the point$®). Comparison
of the coefficients in front of%2+1 leads to(2.15)

2.2. Some variational formulas

If a Riemann surface is realized as a branched covering of the Riemann sphere, the
branch points can be used as natural locardinates on the modwpace. Dependence
of normalized holomorphic differentials, the matrix éfperiods and the canonical
meromorphic bidifferential on the branch points is given by Rauch variational forrfijlas
(for a simple proof se21]). However, on our moduli space the set of natural coordinates is
given by the coefficients of polynomialg and V> and the filling fractions. To differentiate
all interesting objects with respect to these coordinates we need to know the matrix of
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derivatives of the branch points with respect to coefficientg10fV> and filling fractions.
This matrix was computed if16]; below we re-derive some of these formulas, and prove
new variational formulas, required in our context.

In [16] Egs. (2.2)together with analogous equations with respedtio), were solved
in the leading term, i.e., it was found a solution of the system

i‘ =V{(f(P)) —g(P)
Va(f(P)) f(P) . ¢ ’

LA Vy(g(P)) — f(P)
SVag(P) |ypy 2

which a posteriori turns out to satisfy also the following equations with respect to the filling
fractions:

aFO
0€y

=TI, ::ygg(P)df(P).

by

To find a solution ofgs. (2.2)in order I N2 (which would also satisfy a similar set of
equations with respect tg;(y)) we shall need the following.

Lemma 1. The following variational formulas take place

SA
—mg’(Pk)df(P) = B(P, P, (2.16)
58/ (P} 1{ 2" (Py) }
_ df (P)=-3D(P, Py) — B(P, P s 2.17
5P | o) f(P)=71D(P. F) (PO (P, Py) (2.17)

where prime denotes derivative with respect to the local paramete= x;(Q) =

VI(Q) — Ak

Proof. We start from the formulél.11})

5g(P)
B(P,Q)=—"—7"— df(P)d . 2.18
(P, Q) VIO | o) f(P)df(Q) (2.18)

Let us rewrite this formula in the limi® — P, using the local parameteg (Q). First we
notice that for any coordinateon our moduli space the following identity takes place:

& (DI (D) df(Q) = 81(Dlxp(0)df (Q) — [i(D)lxi(0) d&(Q), (2.19)

which follows from differentiation of the functiop(z, f (xx, t)) with respect to variable
using the chain rule. In particular,

5g(Q) 5g(Q) 6g(Q)
oMl d = d - d .
SVi(f(P)) f(Q) @ SVi(f(P) s (0 7 SVi(f(P)) |y (0 $lQ)

(2.20)
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Consider now the first several terms of the local expansigq( 0, dg(Q) and B(P, Q)
asQ — Py

g(Q) =g(P) + g (P)xk+ -, (2.21)
1
dg(Q) = {g/(Pk) +¢" (Po)xi + Eg/”(Pk)x;g +-- } dxy, (2.22)
1
B(P, Q) = {B(P, Py) + B'(P, P)xi + EB”(P, Pk)x,f 4+ .}dxk_ (2.23)

Taking into account thaf (Q) = x,f + Ak, and substituting these relations iffth20), we
get in the zeroth order the formu(2.16)

Coincidence of coefficients in front af; in (2.20)gives rise to the following relation
which defines the dependencegifP) on {uy}:

{2 Sg(P) Sk
SVi(f(P))  sVa(f(P))
we present this relation only for completeness, since it will not be used below.
Finally, collecting the coefficients in front off,f we get
(Sg/(Pk) 1 SAk ,,, 1B"(P, P)
su(ry  2enGgent VT2 are
which leads tq2.17)after using(2.16) O

g”(Pk)} df (P)=B'(P, P); (2.24)

3. Solution of loop equation in 1/N? approximation

The main goal of this paper is to find a solution of the following equation:

SF1
=y, 3.1
AT (31)
whereY1(x) is determined from the /IV? expansion of the loofq. (2.8) Eq. (3.1)is
valid in a neighborhood of the poinb ¢, i.e., in a neighborhood of the point= co on the
“physical” (with respect to the variable) sheet of the spectral cun& The functionF!
should also satisfy the equation

SF1 1

V20) X2(y), (3.2)
where the functionx®(y) should be found from the loop equation written down with
respect to the matrid/» in a neighborhood of the poirb,. We shall first solvégs. (3.1)
and then check the symmetry of the obtained expression with respect to the change of
projectionf < g.

To expresg’! in terms of the objects associated to the spectral clnwe consider the

1/N? term of the master loop equati¢®.8). We have

1
E(x. Y ()= 50<f(P), g(P) + mYl(P) +-- )
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1
+ mz:l(f(P),g(P)) 4+ (3.3)

asP — ooy, where, as before, in a neighborhoodofy, f(P) =x; g(P) = YO(x). The
1/N? expansion of (x, y) looks as follows:

1
E(x,y)=E%, y) + ﬁé’l(x, Y+ (3.9

sincel(x, y) = —P(x, y), we can further rewrite this expression in a neighborhood of
the pointoo ¢ as follows:

E(x. Y() =E(f(P),g(P))
1
+ A E (P, g (P) + YAP)EN(F(P), g(P)}+---. (3.5)
Therefore, the AN? term of the master loop equati¢®.8) gives

UC(F(P). g(P). f(P)) =EXf(P).g(P)) + YH(P)ED(f(P). g(P))
asP — ooy, Or
UC(f(P).g(P). f(P))+PLf(P).g(P))
E9(f(P). g(P)) '

To make this formula more explicit we need to exprlefgsf(P), g(P), f(P)) interms of
known objects using the loop equati(h7). According to the definition af®(x, y, z) we
have:

Y p) =

(3.6)

SU%(x, y)
Ul(x,y,7) = ————22 3.7
(x,y,2) Vi) (3.7)
On the other hand, the zeroth order tern{a7) gives
E%x, y)
0 v ’
(as beforex™ denotes a point on the physical sheetdf Therefore,
8E%x, )8V E%x, sg(x®
U0, y,2) = — (x,y)/8Va(z) (x,y)  bg(x) (3.9)

y—gx®) (3 —gx®)2sVi(r)

Using the form(2.15)of the polynomials®(x, y), we can further rewrite this expression
as follows:

E%x,y) | Lo Esgc®) 1
= 2 = %%, y) . 3.10
SVi(2) ' kz_l Vi) y — gx®) (510
Substituting this formula int¢2.15) we get
Oy Eogr®) 1

uo(-x’ D) Z): (311)

y—g(x®) = §V1(2) y—gx®)’
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Choosingz = x = f(P) and taking the limity — g(x»), we have

0 0 T 55 ®) 1
u P),g(P), f(P))=¢& P),g(P 3.12
(f(P), 8(P). f(P)) =E(f(P). g( )),;avl(f@))g(m—g(x(k» (3.12)
asP =xY — oos. Now (3.6)can be rewritten as follows:
1
Yl(P):P (f(P),g(P)) n Z §8(Q) 1 (3.13)

ENFPLg(P) "\, 55y SVIT(P) 8(P) —2(Q)

as P — ooy, this expression can be further transformed, using the forfiuld)for the

bidifferential B(P, Q):

PUS(P), g(P))

—————————df(P

E9(f(P). g(P)) 7

3 B(P, Q) 1
df(Q) g(P)—g(Q)’

YY(P)df(P) =

+

(3.14)
Q#P: f(Q)=f(P)

now we see that the 1-fornY(P)df(P) can be analytically continued from a
neighborhood ofo s to the wholeL.

Lemma 2. Let the spectral curv& (2.11)be non-singular. Then theform Y1(P) df (P)
(3.14)is a meromorphicl-form on the spectral curvé€ which has polegup to fourth
order) only at the branch point#, i.e., at the zeros of differentidlf (P).

Proof. Let us verify the non-singularity of the first term,

PLf(P), g(P))
EXf(P),g(P))

of the expressior{3.14) everywhere onC. For finite f(P) the 1-form(3.15) can be
singular only at the zeros (ifg(f(P), g(P)), which, if the curvel is non-singular, are

by definition the branch pointg;; these zeros are of the first order and are canceled by the
zeros ofdf (P) at the branch points.

To study the behavior dB.15)at oo y andoo, we mention that the polynomi@ (x, y)
(2.3)(and, therefore, also its first correcti® (x, y)) is of degreal; — 1 with respect to
x andd> — 1 with respect toy. However, we can say a bit more abdt(x, y). Namely,
the coefficient ofP(x, y) in front of xdl‘lde‘l equalsig, +1v4,+1, Which does not have
any higher corrections. Therefore, the coefficient of the polynofiak, y) in front of
x4~1yd2=1 yanishes.

Now consider the behavior of the 1-for{@.15)nearoo ;. We have

ENf(P). g(P)) = —(V5(g(P)) — £(P)) — (V{(f(P)) — g(P)) V5 (3(P))

—PYf(P), g(P)):

this expression has a pole of ordéysd, nearocoy as a corollary of the asymptotics
(2.12) of the functiong(P) nearooy. The 1-formdf(P) has a pole of second order at

df (P) (3.15)
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oo . The most singular contribution d?Lf(P), g(P)) nearooy comes from the term
fa=2(p)g?2=1(P); it has pole of orded; — 2+ d1(d2 — 1) = d1d> — 2. Summing up all
degrees, we see th@.15)is non-singular neaso ;.

Consider the 1-forn(3.15) nearoog. At oo, the differentialdf(P) has a pole of
orderd, + 1; the main contribution téfg(f(P), g(P)) is given by the term(V{(f(P)) —
g(P))V, (g(P)), which has a pole of ordehd> + d» — 1. Finally, the main contribution
to PL(f(P), g(P)) comes from the termg?2—2(P) f¥1-1(P), which has a pole of order
didz — 2. Summing up all degrees, we see t{#all5)is non-singular ato, .

Consider now the second term(@f.14)

y RO 1
oir B AF(Q) 8(P)—5(Q)

The bidifferential B(P, Q) is singular (has second order poles) only at coinciding
arguments, which now means thtcoincides withQ and with one of the branch points
P,. The denominatog (P) — g(Q) also vanishes only i coincides withQ, (i.e., again
both of them coincide with one of the branch poi®g. It is slightly more complicated
to see that zeros aff (Q) do not produce any poles outside Bf. Obviously,df (Q)

is singular if P — P, and Q = P*, where P* is another point such that(P*) = f(P)

and P* — P, as P — Px. However,df(Q) is also singular ifQ coincides with one of
the branch pointg, while P remains on some other sheet, and does not ter} tas

O — P. In this case in the sur(8.16)we have two singular terms (with poles of first
order), which correspond t@ and Q*; however, the residues of these terms just differ by
sign, and, therefore, the total syi®.16)remains finite outside the branch poims and
infinities oo y andoo,.

As P — ooy, all corresponding pointg in (3.16)tend tooog; at all of these points
the differentiald f (Q) has poles of orded, + 2; all other terms remain non-singular and
non-vanishing. Therefor¢3.16)has a zero of ordef, + 1 atoco.

As P — ooy, the situation is slightly more cortipated. Let us enumerate the sheets
of £ such, thatt™™ — ooy andx@, ..., x@+D — oo,, asx — oco. Let us also choose
P :=x@2+D Then(3.16)can be split as follows:

(3.16)

B(x(l), x(d2+1)) 1
df (x@®)  g(x@2tD) — g(x M)
da () o (d2+1)
B(x\ 2 1
n 7, > T) (3.17)

= df (x(D) g(x(d2+l)) — g(x(j))'
Asx — oo, the first term in(3.17)has a zero of order twalff (x V) has a pole of order two,
other multipliers remain non-singular andn-vanishing). The bidifferentid@ (P, Q) has
a pole of second order as— oo in each term of the sum if8.17) Howeverdf (x(/)) has
a pole of orderlz + 1, andg(x%*+D) — ¢(x())) has a simple pole as— oco. Therefore,
the whole expressiof8.17)is non-singular (and even vanishing):as> co. O

Remark 1. The condition of non-singularity of the spectral cu(2el1)made inLemma 2
means in physical language that the spectral curve has maximal possible genus equal to
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didp — 1 for given degrees of polynomialg and V. If the genus of the spectral curve

is less than the maximal genus, the spectral curve must be singular; in this case the non-
singularity of the 1-formr'1(P)df(P) at the double points cannot be verified rigorously.
However, this non-singularity is suggested by physical consideration: since we assume
that at the double points the matri¥; does not have any eigenvalues in the large

limit (i.e., corresponding filling fractions arejeal to zero), there is no physical reason for
corresponding resolvents to be singular at these points. Therefore, in the sequel we shall
assume tha¥1(P) df (P) is non-singular outside of branch points®both for maximal

and non-maximal genus. We should mentiort ths assumption was also made (explicitly

or implicitly) in the previous papef8,9,13,15]

The singular parts of 1(P) df (P) at the branch point®; can be found fron{3.14)
If, say, P — Py, then the only term in(3.14) which contributes to singular part &
corresponds t@ = P*. Thus

B(P, P* 1
YXP)df(P) = ( ) +0(1) asP— P (3.18)
df(P*) g(P)—g(P*)
Consider the local expansion of all ingredients of this expressiah as Py in terms of

the local parameter; (P) =/ f(P) — Ak:

1 1
g(P) =g(Py) + xi(P)g () + —x,?(P)g”(Pw + —x,?(P)g”’(Pk> o

1 1
g(P*) =g(P) — xi(P)g'(Pr) + x<P>g”<Pk>——xk(P)g”’(PkH
df (P*) = 2xk(P) dxi(P),

B(P, P*) = ((zxk(lp))Z + 1SB(Pk) +- )dxk(P) (—dxr(P)).

We have
1 _ 1 (1 x(P)? ”’(Pk>>

g(P) —g(P*)  2xx(P)g'(Px) 6 &P ’
and, asP — Py,

B(P, P*) 1

df(pP*) g(P)—g(P*)

1 1 g" (P Sz 1
N {_16x,?(P)g/(Pk> (9_6g/2(Pk> - 24g’(Pk>)x,§<P> " 0(1)} (P

(3.19)

Since, according to our assumption, the 1-fo¥i(P)df(P) is non-singular on’
outside of the branch points, we can express this 1-form in terms of differeBti&lsP;.)
andD(P, Py) (1.13)using their behavior nea®:

Yy®(Pydr(p)

- g"(P)  Sp(Po) .
Z{ 96 ’(P)D(P’Pk)+|:96g’2(Pk) 24g/(pk)}B(P’Pk)}, (3.20)
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as a result we rewriteq. (3.1)for F1 as follows:

SF1

S
SVi(f(P)) 7

- ¢"(P)  Sp(Py)

= ————D(P, P -
g%g’(m ( "”[ 965'2(Pr) | 24g'(Py)

}B(P, Pk)}. (3.21)

Proposition 1. The general solutiong? of the systeni3.21)can be written as follows

1 1 e
Fl= ST+ 2—4ln{ ]"[g’(Pk)} + C({ve), fea), (3.22)
k=1

whereC ({v}, {€4}) is a function on our moduli space depending only on coefficients of
the polynomialV, and filling fractions{e,}; functionz; (the Bergmann tau-function on
Hurwitz spacgis defined by the system of equations with respect to branch gajits

ad

1
— =——Sp(Py); 3.23
e ney 3 B(Pr) (3.23)

functiont; depends on coordinatésy, vi, €.} as a composite function.

Proof. The derivative ofry with respect td/1( f (P)) is computed via the chain rule using
the variational formulg2.16) derivatives ofg’(P;) with respect toVyi(f(P)) are given
by (2.17) Collecting all these terms together we see that the derivati{@ ?2)coincides
with (3.21) O

Therefore, to comput&! it remains to find the Bergmann tau-functiepand to make
sure that the “constant’ ({vi}, {€y}) is chosen such that the final expression is symmetric
with respect to the change of “projection”, i.e., thgk satisfies als&qs. (3.2)

4. F' and Bergmann tau-function on Hurwitz spaces
4.1. Bergmann tau-function on Hurwitz spaces

Here, following[20], we discuss the Bergmann taurttion on Hurwitz spaces for the
stratum of the Hurwitz space which arises in the application to the two-matrix model.
The Hurwitz spacéd, v is the space of equivalence classes of pairsf), wherel is
a compact Riemann surface of gerwuand f is a meromorphic functions of degree
The Hurwitz space is stratified according to multiplicities of poles of functforBy
H, y(k1,---, ky), whereky + --- + k, = N, we denote the stratum df, y consisting
of meromorphic functions which have poles on£ with multiplicities k1, ..., k,. (In
applications to two-matrix model we need to study the tau-function on the stratum
H, y(1, N — 1), when the functiory has only two poles: one simple pole and one pole of
orderN —1.)
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Suppose that all critical points of the functigrare simple; denote them By, . .., Py
(m = 2N 4 2¢g — 2 according to the Riemann—Huites formula); the critical values
A = m(Py) can be used as (local) coordinatesiny (k1, .. ., k). The functionf defines
the realization of the Riemann surfateas anN-sheeted branched covering®P?! with
ramification pointsPy, ..., P, and branch points; = f(Py); we denote points at infinity
by oc1,...,00,. In a neighborhood of the ramification poif}; the local coordinate is
chosen to bey := /A — Ak, k=1,...,m; in a neighborhood of the poirk; the local
parameter i, := A~ Y%.

The bidifferentialB(P, Q) has a second order pole &— P with the local behavior
(1.12) B(P, 0)/{dz(P)dz(Q)} = ((P) — 2(@) "% + §S5(P) + o(1), wherez(P) is &
local coordinateSg (z(P)) is the Bergmann projective connection.

We define the Bergmannfunctionzs(iy, ..., A,) locally by the system dEgs. (3.23)

0 | ! S k=1 4.1
mnrf_—l—z B(xk)Xk=0, =1,....m, (4.2)
compatibility of this system is a simple corollary of the Rauch variational forni@lbs

Consider the divisor of the differentidf: (df) = km:f re Dy whereDy := Py, ry =1
fork=1,...,mandD, ; =00, ryuyj =—(k;+1) for j=1,...,n; the corresponding
local parametersy, k =1, ..., m + n were introduced above.

Here and below, if an argument of a differential coincides with a pbinof the divisor
(df), we evaluate this differential at the poibt; with respect to the local parametey.
In particular, for the prime form we shall use the following conventions:

E(Dy, Dp) := E(P, Q)vdxi(P)ydxi(Q) | p_p, o_p, (4.2)

fork,I=1,...,m+ N. The next notation corresponds to prime-forms, evaluated at points
of divisor (df) with respect to only one argument:

E(P, Dy) = E(P, QVdx(0Q) | y_p,» (4.3)

[=1,...,m + n; in contrast toE (Dy, D;), which are just scalars; (P, D;) are —1/2-
forms with respect ta.
Denote byws, ..., w, normalized gﬁaa wg = 848) holomorphic differentials onz;
Bus = fba wg is the corresponding matrix éfperiods;® (z|B) is the theta-function.
Choose some initial poinP € £ and introduce the vector of Riemann constakitd
and the Abel mapA,(Q) = fPQ wy. Since all the zeros of the differentidlf have

multiplicity 1, we can always choose the fundamental ¢lbf the universal covering
of £ in such a way thatd((df)) = —2K ? (for an arbitrary choice of the fundamental cell
these two vectors coincide only up to an integer combination of the periods of holomorphic
differentials), where the Abel map is computed along a path which does not intersect the
boundary of..

The key entry of the Bergmann tau-function is the following holomorphic multivalued
(1 - g)g/2-differentialC(P) on L:

1 Xg: 8O (KP)

Wyq (P)---wgy, (P), 4.4
Ty () (P (4.4)
ag_ <
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where

— (=)
W(P) = 1g3,%t<g” wy (P (4.5)

denotes the Wronskian determinant of holomorphic differentials.
The following theorem is a slight modification of the theorem prove@@j.

Theorem 1. The Bergmann tau-functiof@.1) on the Hurwitz spaceéi, y(k1,...,k,) is
given by the following expression

m—+n .
sl
1;=0%% [] [Ew.D]E. (4.6)
k,l=1k<l

where the quantity) defined by

o1 m+N -9
o=[drP]Zcp) [][E®P Do) 2 (4.7)
k=1

is independent of the poirft € L.

The proof of this theorem is very similar {@0]. The only technical difference is
appearance of higher order poles of the functfon

4.2. Dependence of the Bergmann tau-function on the choice of the projection

Theorem 2. Letty andz, be Bergmann tau-functioifd.6)corresponding to divisor&if)
and(dg), respectively. Then

1
tr\ 7 ) [1dr (Q0) g
) -2 [lidg(Po)’ (48)
s (Vapp1) 2 Lle@8Uk
where
djd_l+3
€= (4.9)
2

is a constant which is independent of moduli parameters.

Proof. As before, we assume that the fundamental £els chosen in such a way that
A((df)) = A((dg)) = —2K * . Introduce the following convenient notation for the divisors
(df) and(dg):

mi my+2

(df)=) " Px—2007 — (da+1)00g := > rxDx. (4.10)
k=1 k=1
mo mo+2

(dg) =" Qi — 200, — (d1+ D)ooy := Y sGy. (4.11)

k=1 k=1
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Since degif) = degdg) = 2g — 2, we haveZk’”l’lerk Zfzfzsk =2¢ — 2. Then,
according to the expressi¢#.7)for the Bergmann tau-function, we have

m1+2 my1+2
ap=ctP)ar )] T] (EDw. D T (EP. DY,
k,j=1 k=1
(4.12)
where the values of all prime-forms at the points of the divigbf) are evaluated in

the system of local parameters defined by the funciiomear P, the local parameter

is x¢(P) =/ f(P) — Ak; nearooy the local parameter is,,,+1(P) = 1/f(P), and near
oo, the local parameter is,,, 12 = [ f (P)]~ /4.
Similarly, we have

moy+2 mo+2

(t)2=C8P)[dg(P)]** TT {EGr. G} T]{EP. G},

k,j=1 k=1
(4.13)
where values of all prime-forms at the points of the diviéég) should be evaluated in
the system of local parameters defined by the funcgionear Q. the local parameter is
yk(P) = /g(P) — juk; nearoos the local parameter ig,.,+1(P) = 1/g(P), and nearo,
the local parameter is,,,+2(P) = [g(P)] /.
Therefore,

(r_f>12_ VLR E (D, DY {a’f(P) 127 E(P, Gy
Il

4g—4
. 4.14
V2R E(Gr. G 12 Ldg(P) TP (E(P, Do) } o

Tg

Using independence of this expression of the pdmtwe can split the(dg — 4)th
power into the product over points of the divis@lf) + (dg) (the degree of this divisor
equals exactly ¢ — 4). It is important to remember that, evaluating the prime-forms and
differentialsdf anddg at the pointsD; and G we fix the local parameters (these local
parameters at the points @ff) are defined via the functiofi, and at the points af/g) via
the functiong as explained above). Since the divisa@$) and(dg) have common points
(coy andooyg), in a neighborhood of each of these misi we introduce two essentially
different local parameters, and it is portant to remember in each case in which local
parameter the prime-forms are computed.

Another subtlety is that, being considered as functionsPofdifferent multipliers
in (4.14) either vanish or become singular ¥ € (df) + (dg); cancellation of these
singularities should be accurately traced down.

Consider the first “half” of this expression, namely, the product dver(df):

{df(P) [Tr22(E(P, Gy }
dg(P) [T"I2{E(P, D)y

my1+2 m2+2 Sk YT
_ 1—[ PlimD {df(P) [T 21 H{E(P, G} } ! (4.15)
— D

dg(P) ]'[m1+2{E(P D)}



462 B. Eynard et al. / Nuclear Physics B 694 [PM] (2004) 443-472

m1+2 my1+2 r
= [1 {e@,Do}™" ]_[{ lim ﬂ}k

k=1 k<l iy (P=Di {E(P, Di)}'*

m1+2 moy+2 Sk T
{ . k=1 (E(P,Gp)}* } ! (4.16)

1
X i

llj.[L P—)D[ dg(P)

The first product looks nice since it cancels out against the first product in the numerator of

(4.14) Let us evaluate other ingredients of this expression. We bave Py, ry = 1 for
k=1,...,m1, Dp;s1 =007, kmy11=—2, Dipyy2 = 00g, k12 = —(d2+ 1). Therefore,

my+2 r
H{Iim __drp) }k
P—Dy {E(P, Dy)}'*

k=1

-2

= { lim df(P) EZ(Pa Dm1+1)}}
P—D mq+1

dy ll—[ lim df(P)

I —— (4.17)
:1P—>Pk {E(P, Pr)}

x{ lim {df(P)Ed2+1(P,Dm1+2)}}

P— Dm1+2

where we do not writeo  andoo, instead ofD,,,+1 andD,,, 42, respectively, to indicate
that we need to use the system of local parameters relatg¢dRd. The last term in the
product(4.17)is the easiest one:

P 2
APy R g (4.18)
PP A{E(P, Pr)}  x(P)—0 xg

In a similar way we evaluate the first term:

lim  {af(p) E*(P, Dpys1)} =1, (4.19)

—D, my+1

and the second one:

lim  {df (P) E%2"™(P, Dy, 42)} = —do. (4.20)

_)Dm1+2

It remains to evaluate the third product(f 16}

my+2 nm2+2{E(P Gk)}ék
H {P%Dz dg(P) }

=1

= (ﬁ{dg<Pz>}‘l)( [T {eon Gw}’”")

=1 all k,l such thatD;#Gy

2
x (| lim {E(P, Gy} dg(P))

P%DmlJrl

x ( lim {E(P, Gm2+1)}2dg(P))d2+l. (4.21)

P%DmlJrZ

Consider the first limit in(4.21)
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Lemma 3.

im  ({E(P, Gupi2) ) dg(P))? = (df)(udﬁl)l’%. (4.22)

P%DmlJrl

Proof. Two different local parameters at the poidts = D, 11 = G ,+-2 Which we need
to use arer,,11(P) = f~1(P) andy,+2(P) = g~/ (P). We have

Gigt2(P) 4+ _ [dxms  Omgr2(P) )

E(P,Gpyt2) = = (00f) (4.23)
A ympra(P) dymyt2 VA 11(P)
Taking into account that(P) = m2+2, we have
dym
dg(P) = —(d1) (Ympt2) "~ (dy 2+2( f)) dxm41(P). (4.24)
Xmy+1

Taking in (4.22)the limit P — D,,,+1, we indicate that all differentials in the bracket
should be evaluated with respect to the local parameger;. Therefore, in(4.22) we
ignore all factorsix,,, +1(P); then(4.22)turns out to be equal to

dym 1-dq 1
(df)< = 2+2(00f)> — (&) uaysn) ", (4.25)

Xmy+1
where we took into account that, & — oof, g = Ugy+1x + - thus (dyp,12/
dxXmy+1)(00f) = (ugy 1) . O

Consider now the second limit {@.21)

Lemma4.

im  {E(P, Guyi1)) dg(P) =—1. (4.26)

P%DmlJrZ

Proof. In analogy to(4.22)we have to evaluate the prime-form and the differentjain
the local parameter related to the functinwhich is given byx,,, 1 2(P) = (f(P))~Y/4
(the local parameter near this point related to the fungji@y,,,+1(P) = (g(P))~1). We
have neaD,,, +2:

)’m2+1(P) + tee Xm1+2 )’m2+l(P) +
E(P,Guyt1) = = (00g) (4.27)
2t I t1(P) dYmz+1 szmHz(P
and
1 dym, dx, P
dg(P) =d(7> — St (o ) 2(P) (4.28)
Ympt+1(P) Xmyt2 Y2, 11(P)

As before, substituting these expressiong4d6) and ignoring the arising power of
dxm,+2(P), we see that this limit equalsl. O
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Substituting thig4.26), (4.25)and(4.22)into (4.21) and collecting all terms i(4.16)
we get

{df(P) [Tr2 % E(P, Gy }
dg(P) [T"I2{E(P, D)y

my
— {225 =D} gy )" (H{dg(Pz)}l>
=1

[1p,26,(E(Di, G}
2 .
n?il,kd{E(Dl, Dy}

Now, computing the second “half” ¢#.14) i.e., taking the product analogougth16)
over points of divisor(dg), and multiplying it by(4.29) we come to the statement of
Theorem?2 O

(4.29)

4.3. Bergmann tau-function ar’

Theorem 3. The solutionF! Egs. (3.1) (3.2), (3.20)is given by the following equivalent
formulas

1 1-1 s >+ 3
1_ 12
F 2—4In T (Vay41) 2 I[[ldg(Pk)} +—2 Ind + C, (4.30)
or
Fle Dind 2t lm_zldf(Qk) + B g e (4.31)
24 8 ! pale] 24

Here ry and r, are the Bergmann tau-functiorf4.6) built from divisors(df) and (dg),
respectivelyC is a constant.

Proof. From formulag(4.8), (4.9)it follows that expressiongt.30)and(4.31)coincide.
According toProposition 1the expressiof.30)satisfiesEqgs. (3.1) (3.20)with respect
to coefficients ofV1. Similarly, the expressio(4.31)satisfies the analogous systé&?2)
with respect to coefficients df,. O

Remark 2 (Higher order branch poings If potentialsV; andV> are non-generic, i.e., some
(or all) of the branch points have multiplicity higher than 1, the forn(dl&1)should be
only slightly modified. Namely, the expression for Bergmann tau-funddo®) formally
remains the same in terms of the divisor of the differentjal(the zeros ot/ can now
have arbitrary multiplicities). The expression 6t then looks as follows:

<dg> } dy+3

Ind, + C. (4.32)

1_
F 48|n{ff (Vi) 1_[ redp, o4

The proof of(4.32)is slightly more technlcally involved than the proof in the generic case
and will be published separately.
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5. Equationswith respect to filling fractions

It is well known (see, for exampl¢l17]) that normalizedﬁ}a wg = 84p) holomorphic
differentials can be expressed as follows:

dg(P)

9€u | pep)
(Sketch of the proof: differentiating®.14)with respect tag, we verify the normalization
conditions for differential¢5.1). The 1-formgdf is singular ato ; andoog; atooy we
haveg = V{(f) —1/f + - - -; this singularity disappears since coefficientd’ptand V> are
independent of filling fractionsSingularities of the derivativeg/d¢, at the branch points
Py are canceled by zeros @f at the same points. A, we havex = V,(g) —1/g+--+;
due to the thermodynamic identity
of

df = ———
¥ ! 0€y

2niwg (P) = df (P). (5.1)

g

dg.
0€y §

8
Since coefficients o¥; are independent ef,, the singularity og df atoo, also disappears
after differentiation.)

To obtain equations for derivatives 6 with respect to filling fractions we shall prove
the following analog of emma 1

Lemma 5. The following deformation equations with respect to filling fractions take place

 we (P
De, Mc = —ZHtﬁ, (5.2)
%ﬁ"” - %i{w;’(P )— i :/((g")) wa(Pk)}. (5.3)
The proof is parallel to the proof ¢2.16)and(2.17} from (5.1)we have
aiip) df (P) — BJ;EP) dg(P) = 2riwe(P). (5.4)
o lx(P) a xp(P)

Substituting the local expansiofi®.22)of g(P) and(2.23)of dg(P), together with the
Taylor expansion ofv, (P)

wy (P) = (wa(Pk) + wy, (Po)xi + wg(sz)xlg +-- ) dx, (5.5)
into (5.4), we get, sincef (P) = x,f(P) + A anddf (P) = 2xx (P) dxi(P):
(aeag(Pk) + Xk 0, &' (Pr) + %3&,8”(&) +-- ) 2xk dxg
— Oe, Jk (8/(Pk) + 8" (Po)xk + %g”’(Pk)x,f + - ) dxi

1
= 2ni (wa(Pk) + w!, (Po)xk + Enguﬂk)xf) dxi.
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The zeroth order term givgs.2). Collecting coefficients in front of2, and using(5.2),
we get(5.3).

Theorem 4. Derivatives of the functio® (4.30) (4.31)with respect to filling fractions
look as follows

1
o _ f YX(P)df(P), (5.6)

ba

whereY1df is defined by3.20)

0€y

Proof. The vectors ob-periods of 1-formsB(P, P;) and D(P, P;) can be expressed in
terms of the holomorphic differentials via the following standard formulas:

fB(P, Py) = 2miwg (P, fD(P, Py = 2miwl(Py). (5.7)
b be

Therefore, the>-periods of the 1-form-Y M (P) df (P) defined by(3.20)are given by
the following expression:

— ?§ Yy®(Pyarp)
ba

—2m~§lj{— wy(P) | & (PYwa(Py) SB<Pk>wa(Pk>}
- 96g'(P)  96”2(Py) 24g/(Py)

(5.8)
k=1

On the other hand, derivatives @& (4.30) with respect toe, can be computed using
(5.2), (5.3) and equations for the Bergmann tau-functi¢g23) the result coincides
with (5.8). O

6. F1andrelated objects
6.1. F1, isomonodromic tau-function ar@-function of Frobenius manifolds

We recall that the genus 1 correction free energy in topological field theories is
given by the so-called;-function of the associated Frobenius manifolds. Tiéunction
is a solution of the Getzler equatid@9]; for Frobenius manifolds related to quantum
cohomologies, th& -function was intensively studied as a generating function of elliptic
Gromov-Witten invariants (s€24,30]for references). 1fi24] it was found the following
formula for theG-function of an arbitraryn-dimensional semisimple Frobenius manifold:
7]

m1/48°
k=1 "Mk

where 7; is the Jimbo—Miwa tau-function of Riemann—Hilbert problem associated to
a given Frobenius manifoldl18]; nix are the coefficients of the Darboux—Egoroff
(pseudo)metric corresponding to the semisimple Frobenius manifold.

G=In (6.1)
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One of the well-studied classes of Froheimanifolds arises from Hurwitz spadés].
For these Frobenius manifolds the isomonodromic tau-funatjofi 8] is related to the
Bergmann tau-functiony (3.23)as follows[25]:

u=1,"2 (6.2)

Therefore, the tau-function term is the same in the form{#e80)for F1 and(6.1)for the
G-function (up to a sign, which is related to the choice of the sign in the exponent in the
definition(1.1) of the free energy). The solution of the Fuchsian system corresponding to
the tau-functiort; is not known explicitly. However, the same functign being multiplied
with a theta-functional factor, equals the tau-function of a Riemann—Hilbert problem with
guasi-permutation monodromy matrices which was solvd@6ih

The metric coefficients of the Darboux—Egoroff metric, corresponding to a Hurwitz
Frobenius manifold, are given in terms of an “admissible” 1-fgrrdefining the Frobenius
manifold:

2
Nkk = red p, A (6.3)

If, trying to develop an analogy with our formul@.30) for F1, we formally choose
¢ (P) = dg(P), we getnu = g'2(Px)/2 and the formuld6.1) coincides with(4.30)up

to small details like sign, additive constant and the highest coefficient of the polyngmial
arising from the requirement of symmetry betwegandg.

Therefore, we observe a formal analogy between our expre$4idf) for F1 and
the Dubrovin—Zhang formulé.1) for the G-function. Unfortunately, at the moment this
analogy remains only formal, since, from the point of view of Dubrovin’'s thda8j,
the differentialdg is not admissible; therefore, the metrig. = g’2(Py)/2 built from this
differential is not flat; thus it does not dedira Frobenius manifold. Therefore, the true
origin of the analogy between th@-function of Frobenius manifolds an@? still has to
be explored.

6.2. F1 and determinant of Laplace operator

Existence of a close relationship betwegh and the determinant of certain Laplace
operator was suggested by several authors (see[Z7pfor Hermitian one-matrix model,
[15] for Hermitian two-matrix model and, finally28] for normal two-matrix model with
simply-connected support of eigenvalues). In particuld2&) F1 was claimed to coincide
with the determinant of Laplace operator acting on functions satisfying Dirichlet boundary
conditions in some domain.

However, in the context of Hermitian two-matrix model (as well as in the case of
Hermitian one-matrix modgR7]) this relationship is more subtle.

First, if we do not impose any reality conditions on coefficients of polynonyialand
V>, the functionF! is a holomorphic function of the moduli parameters (i.e., coefficients
of V1, V» and filling fractions), while det is always a real-valued function. The Laplace
operatorA/ which should be playing a role here corresponds to the singular néfiit
of infinite volume.
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This problem disappears if we start from more physical situation, when all moduli
parameters are real, as well as thartwh points of the Riemann surfa€ewith respect
to both projections. In this case! is real-valued itself, as well as the determinant of the
Laplace operator. However, little is knowbaut rigorous definition of the determinants
of Laplace operators for the infinite volume, although such determinants were actively
used by string theorists without mathematical justificaf@ilx+-33] According to empirical
results of[33], the regularized determinant of Laplace operator is given by the
formula

deta/ 5
_ A R 6.4
Vol (£)desg ~ ¢! (6.4)

where Vol £) is a regularized area af, A/ is the Laplace operator defined in the singular
metric|df(P)|?, B is the matrix ofb-periods ofz, C is a constant.

In the “physical” case of real moduli parameters the empirical expregéi@n for
In{detA/} coincides withF! (4.30)up to a simple power and additional multipliers.

Therefore, the relationship between Hermitian and normal two-matrix m{@glen
the level of F1 is not as straightforward as on the level of the functigtfs (F© for
Hermitian two-matrix model can be obtained fraf? for normal two-matrix model by
a simple analytical continuatidia6,17,22,34).

From the formulg6.4) we see thaTheorem 2which describes the dependence of the
Bergmann tau-function on the projection choice is nothing but a version (working for flat
singular metrics) of Alvarez—Polyakov formyIg5], which describes the change of det
if the metric changes within a given conformal class.

7. Partial cases
7.1. From two-matrix to one-matrix model: hyperelliptic curves

Suppose thatl; = 1, i.e., the polynomial, is quadratic. Then the integration with
respect taVz in (1.1)can be carried out explicitly, and we get the partition function of the
one-matrix model:

ZNEe_NZF:C/dMe_N”V(M), (7.1)

whereM := M1, V := V;, andC is a constant.

Ford, = 1 the functionf (P) has two poles of order 1 ab y andoo,; thus, the spectral
curve L is hyperelliptic and the functiorf (P) defines a two-sheeted branched covering
of the Riemann sphere. The numbé&boanch points in this case equalg = 2¢g + 2; as
before, we call them.q, ..., A2.42. The Bergmann tau-functiof8.23)for hyperelliptic
curves was computed [23]; in this case it admits the following, alternative(th6), (4.7),



B. Eynard et al. / Nuclear Physics B 694 [PM] (2004) 443-472 469

expression:
1= AY4detA, (7.2)
where
2g+2
A= [ Gy (73)
j<k.jk=1

A is the matrix ofa-periods of non-normalized holomorphic differentials©n

xPLax
Aaﬂ = % » . (74)

Ao

Here
2g=2
V2= 1_[ (x — )
k=1

is the equation of the spectral curde
Substituting the formulér.2)into (4.30) and ignoring the coefficient,+1 (it becomes
a part of the constant), we get the expression

1 2g+2
Fl= o7id A3 (detA)? [T g’ ) ¢ (7.5)
k=1

which agrees with previously known resuiés-11,13]
7.2. Rational spectral curve (“one-cut” case)

For the “one-cut” case, when the spectral cufi/éas genus zerd?* was computed
in [14]. This result can be deduced from our present formalism as follows. For genus
zero the expression for the Bergmann tau-func{ib22)can be rewritten in terms of the
uniformization map (P) of the Riemann surfacé to the Riemann sphere, satisfying the
conditionz(P) =i + O(1) asP — ooy. The formula forr s looks as follows (see (3.32),
(4.5) in[25]):

do+1

dxp
T = ) [T 2P0,
k=1

This expression can be derived fraith22) using the formula for the prime-form of
obtained as pull-back of the prime-form on the Riemann sphere:

z2(P) —z2(Q)

E(P, =
(7. 9) Vdz(P)A/dz(Q)
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Substituting this formula int¢1.17)and using the chain ruI§—(Pk)d"k(Pk) =7 (Pk),
we rewrite(1.17)as follows:

d2+1d
Fl 24In{vd2+l H (Pk)}

whereC is a constant, in agreement with the formula previously obtaingtéih
7.3. Elliptic spectral curve (“two-cut” case)

Denote the period of the spectral cuiéhy o. The Bergmann tau-functiofi.22)for
elliptic covering with multiplicities of points at infinity equal to 1 adglcan be represented
as follows (25], (3.35)):

do+1d2+3 d

2
12__ 24 w Xk
P =n"%o )( - f)> (ﬁ(oogo [T—=Po. (7.6)
a5 d(f ) w
wheren(o) = [97(0, 0)]1¥3 is the Dedekind eta-functiony is an arbitrary holomorphic
one-form on. (it is easy to see thaf7.6) remains invariant ifw is multiplied by an
arbitrary constant). For simplicity we can normalizesuch that abo, we getw(P) =
d(f~Y%(P))[1 + o(1)]. Under this normalization we get the following expression for
Fl:
1 w 2243 dg
1_ - 1+1/d asg
F-=Inn(o) + 24|n{(vd2+1) Z(a’(f—l) (OOf)> 1[[1 " (Pt +C, (7.7)
which is new; it looks different (although defines the same function) from the expression
previously obtained iifl5]. The expression obtained[ih5] can be derived by straightfor-
ward specialization of the formuld.17)to genus 1 case using the following expression
for the prime-form in genus one:

#1(z(P) —2(Q))
91(0)v/dz(P)/dz(Q)’

wherez(P) is the uniformization map of the curv&to the torus with periods 1 an (in
the elliptic case the differential(P) does not depend oA and equal®/ (0)).

E(P, Q)=
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