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Let f : X → CP1 be a meromorphic function of degree N with simple poles and simple

critical points on a compact Riemann surface X of genus g and let m be the standard

round metric of curvature 1 on the Riemann sphere CP1. Then the pullback f ∗m of m

under f is a metric of curvature 1 with conical singularities of conical angles 4π at the

critical points of f . We study the ζ -regularized determinant of the Laplace operator on

X corresponding to the metric f ∗m as a functional on the moduli space of the pairs (X , f )

(i.e., on theHurwitz spaceHg,N(1, . . . , 1)) and derive an explicit formula for the functional.

1 Introduction

Determinants of Laplacians on Riemann surfaces often appear in the framework of Geo-

metric Analysis (in connection with Sarnak program [21]) and quantum field theory (in

connection with various partition functions). An explicit computation of the determi-

nant of the Laplacian corresponding to the metric of constant negative curvature ([4],

see also [7]) provides an example of beautiful interplay between the spectral theory

and geometry of moduli spaces of Riemann surfaces. By the Gauss–Bonnet theorem the

metrics of constant positive curvature on compact Riemann surfaces are necessarily

singular (unless the genus of the surface is equal to zero) and the same is true for the

metrics of zero curvature (unless the genus is equal to one). The determinants of the
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Laplacians in flat singular metrics are intensively studied (see, e.g., [1, 9, 11, 13, 16]), the

case of constant positive curvature attracted attention only recently (in particular, in

connection with quantum Hall effect). The only explicit computation of the determinant

in the case of a metric of constant positive curvature (except for the classical result for

the smooth round metric on the sphere [27]) is done for the spheres with two antipodal

conical singularities ([24], see also [25] for corrections and a relation of this result to

quantum physics). According to the result of Troyanov [22], there are only two classes

of genus zero surfaces with metrics of constant curvature 1 with two conical points:

• Surfaces with two antipodal conical singularities (i.e., the distance between

them is π and they are conjugate points) of the same (arbitrary positive)

conical angle.

• Surfaces with two conical points of the same angle 2πk, k = 2, 3, . . . ; the

corresponding conical metric is the pullback f ∗m of the standard metric m of

curvature 1 on CP1 under a meromorphic function f : CP1 → CP1 with two

critical points.

As we already mentioned, for the first class surfaces the determinant was found in

[24, 25]. The motivation of this article comes mainly from the need to compute the deter-

minant of the Laplacian � for the surfaces of the second class. For this determinant we

obtain the explicit formula

det′
� = C|z1 − z2| 12 (1 + |z1|2)− 1

4 (1 + |z2|2)− 1
4 , (1)

which is the most elementary consequence of our main result. Here f : CP1 → CP1 is

a meromorphic function with two simple critical points and the corresponding critical

values z1 and z2, the constant C is independent of z1 and z2, and det′ is the modified (i.e.,

with zero mode excluded) ζ -regularized determinant. The constant C can be found by

using the result [24]: one has to consider a sphere with two antipodal singularities of

conical angle 4π and compare the formula (1) with the one given in [24]).

Our main result is an explicit formula for the determinant valid for arbitrary

meromorphic functions f : X → CP1 on compact Riemann surfaces X of arbitrary genus

(for simplicitywe consider only functions f with simple critical values, themodifications

required to consider all othermeromorphic functions are insignificant and of no interest,

the result remains essentially the same).

Let Hg,N(1, . . . , 1) be the Hurwitz moduli space of pairs (X , f ), where X is a com-

pact Riemann surface of genus g and f is a meromorphic function on X of degree N
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with M = 2g − 2 + 2N simple critical points. We assume that all the critical values are

finite, that is, the poles of the function f are not the critical points and, therefore, are

simple. The part (1, . . . , 1) (N times) of the symbol Hg,N(1, . . . , 1) shows the branching

scheme over the point at infinity of the base of the ramified covering f : X → CP1, the

preimage of ∞ ∈ CP1 consists of N distinct points. The space Hg,N(1, . . . , 1) is known to

be a connected complex manifold of complex dimensionM , the critical values z1, . . . , zM

of the function f can be taken as local coordinates.

Let τ stand for the Bergman tau-function on the Hurwitz spaceHg,N(1, . . . , 1) (also

known as isomonodromic tau-function of the Hurwitz Frobenius manifold). Referring

the reader to [14, 17, 18] for the definition and properties of this object, we would like to

emphasize that the explicit expressions for τ through holomorphic invariants of the Rie-

mann surface (prime form, theta functions, and etc.) and the divisor of the meromorphic

differential df are known; see [14, 15] for the genus g = 0, 1 and [17, 18] for g � 2.

The pullback f ∗m of the standard metric m of curvature 1 on CP1 under f is

a metric of curvature 1 with conical singularities at the critical points P1, . . . ,PM of f ,

the conical angle at any critical point is 4π , cf. [26]. It turns out that the operator zeta-

function ζ(s) of the Friedrichs extension of the Laplace operator� on (X , f ∗m) is regular

at the point s = 0 and, therefore, one can define the (modified, i.e., with zero mode

excluded) ζ -regularized determinant

det′
� := exp{−ζ ′(0)}.

As the main result of the present article, we prove the following explicit formula for this

determinant:

det′
� = C det�B|τ |2

M∏
k=1

(1 + |zk|2)−1/4. (2)

Here the constant C is independent of the point (X , f ) of the space Hg,N(1, . . . , 1) and B

is the matrix of b-periods of the Riemann surface X (in the case g = 0 the factor det�B

in (2) should be omitted). In the simplest case one has g = 0, N = 2, and τ = (z1 − z2)1/4,

thus (1) is the most elementary consequence of (2).

The article, is organized as follows. In Section 2, we show that the zeta-function

ζ(s) is regular at s = 0 and define the ζ -regularized determinant of �. In Section 3, we

study asymptotics of eigenfunctions near conical singularities. Explicit formulas for

certain coefficients in asymptotics of related special solutions are found in Section 4. In

Section 5,we study variations of some symmetric expressions involving eigenvalues of�
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under perturbation of conical singularities. Finally, in Section 6 we use all these results

to deduce a variational formula for det′
� (see Theorem 6.2) and then the formula (2) (see

Theorem 6.3).

2 Heat Kernel Asymptotic and det′ �

Let � stand for the Friedrichs extension of the Laplace–Beltrami operator on (X , f ∗m).

The asymptotic of Tr e−�t as t → 0+ can be found by methods developed in [2, 3, 6]. We

need some preliminaries before we can formulate the result.

Introduce the local geodesic polar coordinates (r,ϕ) on (X , f ∗m) with center at

Pk, where ϕ ∈ [0, 4π) and r ∈ [0, ε], ε is smaller than the distance from Pk to any other

conical singularity. In the coordinates (r,ϕ) the metric f ∗m takes the form

f ∗m(r,ϕ) = dr2 + sin2 rdϕ2.

Let h(r) = 2 sin r and ψ = ϕ/2 ∈ S
1. Consider the selfadjoint operator

A(r) = −r2h−2(r)∂2ψ − r2
(
cot2 r + 2

)
/4, r ∈ [0, ε], (3)

in L2(S1) with the domain H2(S1). This operator is related to � in the following way: In

a small neighbourhood of Pk the Laplacian can be written as

� = h−1/2(−∂2r + r−2A(r))h1/2

acting in L2(hdr dψ). The operator L = −∂2r + r−2A(r) falls into the class of operators

studied in [3] as A(r) satisfies the requirements [3, (A1)–(A6), page 373]. Then [3, Theo-

rems 5.2 and 7.1] imply that for any smooth cut-off function 
 supported sufficiently

close to the singularity Pk and such that 
 = 1 in a small vicinity of Pk one has

Tr 
e−�t
∼

∞∑
j=0

Ajt
j−3
2 +

∞∑
j=0

Bjt
− αj+4

2 +
∑

j:αj∈Z−
Cjt

− αj+4
2 log t as t → 0+, (4)

whereAj, Bj, and Cj are some coefficients and {αj} is a sequence of complex numbers with

�αj → −∞. Moreover, the coefficient before t0 log t in the above asymptotic is given by
1
4 Res ζ(−1), where ζ stands for the ζ -function of (A(0)+1/4)1/2; see [3, f-la (7.24)]. Clearly,

A(0) = −2−2∂2ψ − 1/4 and the ζ -function of (A(0)+ 1/4)1/2 is given by

ζ(s) = 2
∑
j�1

(j/2)−s = 2s+1ζR(s),
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where ζR is the Riemann zeta function. Thus Res ζ(−1) = 0 and the term with t0 log t

in (4) is absent.

For a cut-off function ρ supported outside of conical points P1, . . . ,PM the short

time asymptotic Tr(1 − ρ)e−�t ∼ ∑
j�−2 ajt

j/2 can be obtained in the standard way from

the formulas for the parametrix Bn(λ) approximating (� − λ)−2 to the order n, see for

example, [6] or [5, Problem 5.1]. Hence the short time asymptotic for e−�t is of the form (4),

where the term t0 log t is absent. As a consequence, the ζ -function

ζ(s) = 1

�(s)

∫ ∞

0
ts−1(Tr e−t� − 1)dt

has no pole at zero and we can define the modified (i.e., with zero mode excluded)

determinant det′
� = exp{−ζ ′(0)}.

3 Asymptotics of Eigenfunctions and Special Solutions Near Conical Singularities

In a vicinity of Pk, we introduce the distinguished local parameter x = √
z − zk . Since

m = 4|dz|2
(1 + |z|2)2 , (5)

we have

f ∗m(x, x̄) = 16|x|2 |dx|2
(1 + |x2 + zk|2)2 and �∗ = − (1 + |x2 + zk|2)2

4|x|2 ∂x∂x̄ . (6)

Here and elsewhere we denote the Laplace–Beltrami operators by�∗ reserving the nota-

tion � for their Friederichs extensions. The complex plane C endowed with the metric

f ∗m(x, x̄) has a “tangent cone” of angle 4π at x = 0.

Lemma 3.1. Let u,F ∈ L2(X) and �∗u = F (in the sense of distributions). Then in a

small vicinity of x = 0 we have

u(x, x̄) = a−1x̄
−1 + b−1x

−1 + a0 ln |x| + b0 + a1x̄ + b1x + R(x, x̄), (7)

where ak and bk are some coefficients and the remainder R satisfies R(x, x̄) = O(|x|2−ε)

with any ε > 0 as x → 0. Moreover, the equality (7) can be differentiated and the

remainder satisfies ∂xR(x, x̄) = O(|x|1−ε) and ∂x̄R(x, x̄) = O(|x|1−ε) with any ε > 0. �

Proof. The proof consists of standard steps based on the Mellin transform and a priori

elliptic estimates, see for example, [19, Chapter 6] for details.
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Let χ ∈ C∞
c (X) be a cut-off function supported in the neighbourhood |x| < 2δ of

Pk and such that χ(|x|) = 1 for |x| < δ, where δ is small. Then �∗u = F implies

−|x|−2∂x∂x̄
(
χu
)
(x, x̄) = 4

(
χF
)
(x, x̄)+ [�∗,χ ]u(x, x̄)
(1 + |x2 + zk|2)2 , (8)

where the right hand side (extended from its support to X by zero) is in L2(X). Indeed,

for any cut-off function 
 ∈ C∞
c (X \ {P1, . . . ,PM }) the standard result on smoothness of

solutions to elliptic problems gives 
u ∈ H1(X), where the Sobolev space H1(X) is the

domain of closed densely defined quadratic form of �∗ in L2(X). For a suitable 
 we

obtain [�∗,χ ]u = [�∗,χ ]
u ∈ L2(X) and hence the right hand side of (8) is in L2(X).

We rewrite (8) in the polar coordinates (r,ϕ), where r = |x|2 and ϕ = arg x,

multiply both sides by r2, and then apply the Mellin transform f̂ (s) = ∫∞
0 rs−1f (r)dr,

assuming that all functions are extended from their supports to r ∈ [0,∞) and ϕ ∈ [0, 2π)
by zero. As a result (8) takes the form −(4−1∂2ϕ − s2

)
χ̂u(s) = Ĝ(s). Due to the inclusion

u ∈ L2(X) (respectively, r−2G ∈ L2(X)) the function s �→ χ̂(s) ∈ L2(S1) (respectively,

s �→ Ĝ(s) ∈ L2(S1)) is analytic in the half-plane �s > 1 (respectively, �s > −1) and

square summable along any vertical line in the corresponding half-plane. In the strip

−1 < �s < 1 the resolvent
(
4−1∂2ϕ − s2

)−1
: L2(S1) → L2(S1) has simple poles at s = ±1/2

and a double pole at s = 0. We have

(
χu
)
(r) = 1

2π i

∫ 1−ε+i∞

1−ε−i∞
r−sχ̂u(s)ds = − 1

2π i

∫ 1−ε+i∞

1−ε−i∞
r−s(4−1∂2ϕ − s2

)−1
Ĝ(s)ds,

where ε ∈ (0, 1/2). The elliptic a priori estimate with parameter

2∑
�=0

|s|2�
∥∥∥∂2−�

ϕ

{(
4−1∂2ϕ − s2

)−1
Ĝ(s)

}
;L2(S1)

∥∥∥2
� C

(
‖Ĝ(s);L2(S1)‖2 + ‖(4−1∂2ϕ − s2

)−1
Ĝ(s);L2(S1)‖2

)
,

(9)

where the last term can be neglected for sufficiently large values of |s|, justifies the

change of the contour of integration in the inverse Mellin transform from �s = 1 − ε to

�s = −1 + ε. We use the Cauchy theorem and arrive at

(
χu
)
(x, x̄) = a−1x̄

−1 + b−1x
−1 + a0 ln |x| + b0 + a1x̄ + b1x + R(x, x̄),

where

R(x, x̄) = R(r,ϕ) = − 1

2π i

∫ −1+ε+i∞

−1+ε−i∞
r−s(4−1∂2ϕ − s2

)−1
Ĝ(s)ds.
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The boundedness of s �→ (
4−1∂2ϕ − s2

)−1
on the line �s = −1 + ε and (9) give

2∑
�=0

(1 + |s|2)�
∥∥∥∂2−�

ϕ

{(
4−1∂2ϕ − s2

)−1
Ĝ(s)

}
;L2(S1)

∥∥∥2 � C‖Ĝ(s);L2(S1)‖2, (10)

where C does not depend on s. The Parseval equality turns (10) into the estimate

∫ 2π

0

∫ 2δ

0
r−4+2ε

( 2∑
�=0

|(r∂r)�∂2−�
ϕ R(r,ϕ)|2 + |r∂rR(r,ϕ)|2

+ |∂ϕR(r,ϕ)|2 + |R(r,ϕ)|2
)
r dr dϕ = O(1).

This together with Sobolev embedding theorem implies

|x|−2+2εR(x, x̄) = O(1), |x|−1+2ε∂xR(x, x̄) = O(1), |x|−1+2ε∂x̄R(x, x̄) = O(1).

The proof is complete. �

Let u ∈ L2(X) and v ∈ L2(X) be such that �∗u ∈ L2(X) and �∗v ∈ L2(X) (with

differentiation understood in the sense of distributions) and bounded everywhere except

possibly for Pk. Consider the form

q[u,v] := (�∗u,v)− (u,�∗v);

here and elsewhere (·, ·) stands for the inner product in L2(X). By Lemma 3.1 we have (7)

and

v(x, x̄) = c−1x̄
−1 + d−1x

−1 + c0 ln |x| + d0 + c1x̄ + d1x + R̃(x, x̄). (11)

The Stokes theorem implies

q[u,v] = lim
ε→0+

∫
X\{x:|x|<ε}

(�∗uv̄ − u�∗v)dVol = 2i lim
ε→0+

∮
|x|=ε

(∂xu)v̄ dx + u(∂x̄ v̄)dx̄.

Now simple calculation in the right hand side allows to express q[u,v] in terms of

coefficients in (7) and (11) as follows:

q[u,v] = 4π(−a−1d̄1 − b−1c̄1 − b0c̄0/2 + a0d̄0/2 + b1c̄−1 + a1d̄−1). (12)

Recall that� stands for the Friedrichs extension of the Laplace–Beltrami opera-

tor�∗ on (X , f ∗m). As is known (see e.g., [12, Chapter VI]), for the domain D of�we have
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D ⊂ H1(X). The embedding H1(X) ↪→ L2(X) is compact and the spectrum of� is discrete.

Thanks to |u(p)| � ‖u;H1(X)‖, p ∈ X , the functions in the domain D are bounded and

thus for any u ∈ D the assertion of Lemma 3.1 is valid with a−1 = b−1 = a0 = 0 (in fact,

u ∈ D if and only if u ∈ L2(X), �∗u ∈ L2(X), and a−1 = b−1 = a0 = 0 in its asymptotic (7)).

Let χ ∈ C∞
c (X) be a cut-off function supported in the neighbourhood |x| < 2δ of

Pk and such that χ(|x|) = 1 for |x| < δ, where δ is small. We denote the spectrum of � by

σ(�) and introduce

Y(λ) = χx−1 − (�− λ)−1(�∗ − λ)χx−1, λ /∈ σ(�),

where the function χx−1 is extended from the support of χ to X by zero. It is clear that

Y(λ) ∈ L2(X) and Y(λ) �= 0 as χx−1 /∈ D ; that is, Y /∈ D is one of special solutions to

(�∗ − λ)Y(λ) = 0 responsible for deficiency indices of � �C∞
c (X\{P1,...,PM }). By Lemma 3.1 we

have

Y(x, x̄; λ) = x−1 + c(λ)+ a(λ)x̄ + b(λ)x + O(|x|2−ε), x → 0, ε > 0. (13)

In the remaining part of this section we prove some results that previously

appeared in the context of flat conical metrics [8, 10].

Lemma 3.2. The function Y(λ) and the coefficient b(λ) in (13) are analytic functions of

λ in C \ σ(�) and in a neighbourhood of zero. Besides, we have

4π
d

dλ
b(λ) = (

Y(λ),Y(λ)
)
. (14)

�

Proof. Since ker� = span{1}, in a neighbourhood of λ = 0 the resolvent admits the

representation

(�− λ)−1f = λ−1( f ,Vol(X)−1)+ R(λ)
(
f − (f ,Vol(X)−1)),

where R(λ) is a holomorphic operator function with values in the space of bounded

operators in L2(X). Observe that(
(�∗ − λ)χx−1, 1

) = q[χx−1, 1] − λ(χx−1, 1) = −λ(χx−1, 1);

therefore λ �→ Y(λ) ∈ L2(X) is holomorphic in a neighbourhood of zero. Thanks to

b(λ) = 1

4π
q[Y(λ),χ x̄−1] = 1

2π

(
Y(λ), (�∗ − λ̄)χ x̄−1

)
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the coefficient b(λ) is holomorphic together with Y(λ).

We obtain the equality (14) as follows:

4π
d

dλ
b(λ) = q

[ d

dλ
Y(λ),χ x̄−1

]
= q

[
(�− λ)−1χx−1 − (�− λ)−2(�∗ − λ)χx−1,χ x̄−1

]
= q

[
(�− λ)−1Y(λ),Y(λ)

]
= (

(�∗ − λ)(�− λ)−1Y(λ),Y(λ)
) = (

Y(λ),Y(λ)
)
.

One can also show that the coefficients c(λ) and a(λ) = a(λ̄) in (13) are holomorphic in a

neighbourhood of zero. Moreover, 4π d
dλa(λ) = (

Y(λ),Y(λ̄)
)
. �

Lemma 3.3. Let {�j}∞
j=0 be a complete set of real normalized eigenfunctions of� and let

{λj}∞
j=0 be the corresponding eigenvalues, that is,��j = λj�j,�j = �j, and ‖�j;L2(X)‖ = 1.

Then for the coefficients aj and bj = āj in the asymptotic

�j(x, x̄) = cj + ajx̄ + bjx + O(|x|2−ε), x → 0, ε > 0, (15)

we have

16π2
∞∑
j=0

b2
j

(λj − λ)2
= (

Y(λ),Y(λ)
)
, (16)

where the series is absolutely convergent. �

Proof. The asymptotic (15) for �j ∈ D follows from Lemma 3.1. Starting from the

eigenfunction expansion of Y(λ) we obtain

Y(λ) =
∞∑
j=0

(
Y(λ),�j

)
�j =

∞∑
j=0

(
Y(λ), (�− λ̄)�j

)
λj − λ

�j =
∞∑
j=0

q[Y(λ),�j]
λj − λ

�j.

This together with (12) and bj = āj gives

Y(λ) = −4π
∞∑
j=0

bj
λj − λ

�j. (17)

As a consequence, the series in (16) is absolutely convergent and

∞∑
j=0

|bj|2
|λj − λ|2 = 1

16π2
‖Y(λ);L2(X)‖2.

Finally, we obtain (16) substituting the expression (17) and its conjugate into the inner

product
(
Y(λ),Y(λ)

)
. �
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4 Explicit Formulas for b(0) and b(−∞)

In this section, we study the behaviour of the coefficient b(λ) from (13) as λ → −∞
and obtain explicit formulas for b(−∞) = limλ→−∞ b(λ) and b(0). Let us emphasize that

the choice of the local parameter x in a vicinity of Pk ∈ X is a part of definition of the

coefficients a(λ),b(λ), and c(λ) in (13).

Lemma 4.1. As λ → −∞ for the coefficient b(λ) in (13) we have

b(λ) = 1

2

z̄k
1 + |zk|2 + O(|λ|−∞). �

Proof. Case 1. Consider the meromorphic function f : X = CP1 → CP1 given by z =
f (w) = w2; the critical values of f are z1 = 0 and z2 = ∞. Clearly, w coincides with the

distinguished parameter x = √
z − z1, the metric f ∗m and the Laplace–Beltrami operator

�∗ are given by (6), where zk = z1 = 0. Introduce the geodesic polar coordinates (r,ϕ) on

(CP1, f ∗m) with center at ∞ ∈ CP1 by setting ϕ = 2argw ∈ [0, 4π) and cot(r/2) = |w|2,
r ∈ [0,π ]. In the coordinates (r,ϕ) we have

�∗ = −∂2r − cot r ∂r − (sin r)−2∂2ϕ

and the functionY with asymptotic (13) can be found by separation of variables. Namely,

we seek for Y of the form

Y(r,ϕ; λ) = R(cos r)e−iϕ/2. (18)

For (18) the equation (�∗ − λ)Y = 0 reduces to the Legendre equation

(1 − t2)R′′(t)− 2tR′(t)+
[
λ−

(
1

2

)2 1

1 − t2

]
R(t) = 0 (19)

on the line segment [−1, 1], where t = cos r and the solution R(t) should be bounded at

t = 1 and have the asymptotic R(cos r) = √
tan(r/2) + O(1) as r → π (i.e., as x → 0).

Observe that R(t) = − 2√
π cos(νπ)Q

1/2
ν (t), where Q1/2

ν is the associated Legendre function

Q1/2
ν (cos r) = −

( π

2 sin r

)1/2
sin

(
(ν + 1/2)r

)
satisfying (19) with λ = ν(ν+1); see [20, p. 359, f-la 14.5.13]. This together with (18) gives

Y(r,ϕ; λ) = 1

w

(
cos(νr)

cos(νπ)
+ sin(νr)

cos(νπ)
|w|2

)
. (20)

Conical Metrics of Curvature 1 and det′ � 3251

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/10/3242/4161647 by Vanier Library user on 01 M
ay 2022



Since w = x and

cos νr

cos νπ
= 1 − ν tan(νπ)

r − π

cot(r/2)
|x|2 + O(|x|4) = 1 + 2ν tan(νπ)|x|2 + o(|x|2) as x → 0,

we conclude that in the asymptotic (13) of (20) we have b(λ) ≡ 0 (and also c(λ) ≡ 0 and

a(λ) = (1 + 2ν) tan(νπ)).

Case 2. Consider f̂ : CP1 → CP1 given by z = f̂ (w) = w2+z1
1−z̄1w2 ; the critical values

of f̂ are z1 and −1/z̄1. As in the first case, the metric f̂ ∗m has two antipodal 4π-conical

points (at w = 0 and w = ∞). However the distinguished parameter x = √
z − z1 does

not coincide with w if z1 �= 0. As a consequence, the corresponding function Y and the

coefficient b(λ) in its asymptotic (13) can be different from those obtained in Case 1.

We notice that the isometry z �→ αz+β
−βz+α of the base (CP1,m) of a ramified covering

f : X → CP1 can be lifted to the corresponding isometry of (X , f ∗m) and the latter

commutes with �∗. Take the isometry z �→ z−z1
z̄1z+1 of (CP1,m) sending z1 to 0 and let J be

its lift to (CP1, f̂ ∗m). We transform Y from (20) by J and renormalize

Ŷ = (1 + |z1|2)−1/2Y ◦ J . (21)

It is straightforward to check that Ŷ has the asymptotic (13) in the distinguished local

parameter x = √
z − z1 and for the corresponding coefficient b(λ) we have

b(λ) = 1

2

z̄1
1 + |z1|2 .

Case 3. Finally, consider the general case. Let X be a compact Riemann surface

and let f : X → CP1 be a meromorphic function with simple poles and simple critical

points P1, . . . ,PM .

Consider, for instance, the critical point P1. The function f has the same critical

value z1 as the function f̂ from Case 2. Small vicinities U(P1) and Û (̂P1) of the corre-

sponding critical points P1 ∈ X and P̂1 ∈ X̂ = CP1 are isometric. In the local parameter

x = √
z − z1 (which is the distinguished one for bothX and X̂ ) the differential expressions

�∗ and �̂∗ are the same.

Let ρ be a smooth cut-off function on X̂ such that ρ is supported inside Û (̂P1),

ρ ≡ 1 in a vicinity of P̂1, and ρ depends only on the distance to P̂1. We identify P1 and P̂1 as

well as U(P1) and Û (̂P1) and then extend the functions ρŶ and (�∗ −λ)ρŶ = [�̂∗, ρ]Ŷ from

U(P1) ≡ Û (̂P1) toX by zero; here Ŷ is the function (21) on X̂ = CP1. Clearly, [�̂∗, ρ]Ŷ ∈ L2(X)

and therefore (�− λ)−1(�∗ − λ)ρŶ is well defined.
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Now we represent the function Y on X corresponding to P1 in the form

Y(λ) = ρŶ(λ)+ (�− λ)−1(�∗ − λ)ρŶ(λ). (22)

Let b(λ) be the coefficient from the asymptotic (13) of Y . We have

4π
(
b(λ)− 1

2

z̄1
1 + |z1|2

)
= q

[
Y(λ)− ρŶ(λ),Y(λ)

]
=
(
(�∗ − λ)(Y(λ)− ρŶ(λ)),Y(λ)

)
= −

(
[�∗, ρ]Ŷ(λ), ρŶ(λ)+ (�− λ)−1[�∗, ρ]Ŷ(λ)

)
,

(23)

where the right hand side goes to zero like O(|λ|−∞) as λ → −∞. Indeed, from the explicit

formulas (20) and (21) we immediately see that ‖[�∗, ρ]Ŷ ;L2(X)‖ = O(|λ|−∞) and that

|Ŷ(λ)| = O(|λ|−∞) uniformly on the support of [�∗, ρ]Ŷ as λ → −∞ (i.e., as �ν → +∞,

where λ = ν(ν + 1)). This together with (23) completes the proof. �

In order to find the value b(0) corresponding to a conical point Pk we need to con-

struct a (unique up to addition of a constant) harmonic function Y bounded everywhere

on X except for the point Pk, where Y(x, x̄; 0) = 1
x +O(1) in the distinguished local param-

eter x = √
z − zk (cf. (13)). Such a function was explicitly constructed in [8, 10] using the

canonical meromorphic bidifferentialW( · , · ) (also known as the Bergman bidifferential

or the Bergman kernel) on X . This leads to an explicit expression for the coefficient b(0)

in the asymptotic expansion (13) of Y , which was obtained as a part of Proposition 6 in

[10]. To formulate the result we need some preliminaries.

Chose a marking for the Riemann surface X , that is, a canonical basis

a1,b1, . . . ,ag,bg of H1(X ,Z). Let {v1, . . . ,vg} be the basis of holomorphic differentials on

X normalized via ∫
a�

vm = δ�m,

where δ�m is the Kronecker delta. Introduce the matrix B = (B�m) of b-periods of the

marked Riemann surface X with entries B�m = ∫
b�
vm. Let W( · , · ) be the canonical

meromorphic bidifferential on X × X with properties

W(P,Q) = W(Q,P),
∫
a�

W( · ,P) = 0,
∫
bm

W( · ,P) = 2π ivm(P).
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The bidifferential W has the only double pole along the diagonal P = Q. In any

holomorphic local parameter x(P) one has the asymptotics

W(x(P),x(Q)) =
(

1

(x(P)− x(Q))2
+ H(x(P),x(Q))

)
dx(P)dx(Q), (24)

H(x(P),x(Q)) = 1

6
S(x(P))+ O(x(P)− x(Q)),

as Q → P, where SB(·) is the Bergman projective connection.

Consider the Schiffer bidifferential

S(P,Q) = W(P,Q)− π
∑
�,m

(�B)−1
�mv�(P)vm(Q).

The Schiffer projective connection, SSch, is defined via the asymptotic expansion

S(x(P),x(Q)) =
(

1

(x(P)− x(Q))2
+ 1

6
SSch(x(P))+ O(x(P)− x(Q))

)
dx(P)dx(Q).

One has the equality

SSch(x) = SB(x)− 6π
∑
�,m

(�B)−1
�mv�(x)vm(x).

In contrast to the canonical meromorphic differential and the Bergman projective

connection, the Schiffer bidifferential and the Schiffer projective connection are inde-

pendent of the marking of the Riemann surface X . Let us also emphasize that the value

of a projective connection at a point of a Riemann surface depends on the choice of

the local holomorphic parameter at this point. Now we are in position to formulate the

needed result from [10, Proposition 6].

Lemma 4.2. We have

b(0) = −1

6
SSch(x) �x=0,

where x is the distinguished local parameter x = √
z − zk near the point Pk. �

Proof. We only notice that in [10, Proposition 6] Y is denoted by f1 (see [10, f-la (4.7)])

and b(0) is denoted by Shh1
2
1
2
(0) (see [10, f-la (4.6)]). �

3254 V. Kalvin and A. Kokotov

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/10/3242/4161647 by Vanier Library user on 01 M
ay 2022



5 Variation of Eigenvalues Under Perturbation of Conical Singularities

Pick a regular point z0 ∈ C such that z1, . . . , zM are (end points but) not internal points of

the line segments [z0, zk], k = 1, . . . ,M . Consider the union U = ∪M
k=1[z0, zk]. The comple-

ment X \f −1(U) of the preimage f −1(U) in X has N connected components (N sheets of the

covering) and f is a biholomorphic isometry from each of these components equipped

with metric f ∗m to CP1 \ U equipped with the standard metric (5). Thus the Riemann

manifold (X , f ∗m) is isometric to the one obtained by gluing N copies of the Riemann

sphere (CP1,m) along the cuts U in accordance with a certain gluing scheme. By per-

turbation of the conical singularity at Pk we mean a small shift of the end zk of the cut

[z0, zk] on those two copies of the Riemann sphere (CP1,m) that produce 4π-conical angle

at Pk after gluing along [z0, zk].
Let 
 ∈ C∞

0 (R) be a cut-off function such that 
(r) = 1 for x < ε and 
(r) = 0 for

r > 2ε, where ε is small. Consider the selfdiffeomorphism

φw(z, z̄) = z + 
(|z − zk|)w

of the Riemann sphere CP1, where w ∈ C and |w| is small. On two copies of the Rie-

mann sphere (on those two that produce the conical singularity at Pk after gluing along

[z0, zk]) we shift zk to zk + w by applying φw . We assume that the support of 
 and the

value |w| are so small that only [z0, zk] and no other cuts are affected by φw . In this

section, we consider the perturbed manifold as N copies of the Riemann sphere CP1

glued along the (unperturbed) cuts U, however N − 2 copies are endowed with metric m

and 2 certain copies (mutually glued along [z0, zk]) are endowed with pullback φ∗
wm of

m by φw .

Let (X , f ∗
wm) stand for the perturbed manifold, where fw : X → CP1 is the mero-

morphic function with critical values z1, . . . , zk−1, zk +w, zk+1, . . . , zM . Since (X , f ∗
wm) and

(X , f ∗m) are both isometric to the corresponding manifolds glued from N copies of the

Riemann sphere (CP1,m) along (different) cuts, the spaces L2(X) induced by f ∗
wm and

f ∗m can be identified. By �w we denote the Friedrichs extension of Laplace–Beltrami

operator on (X , f ∗
wm) and consider �w as a perturbation of �0 on (X , f ∗m) acting in the

same space L2(X).

For the matrix representation of the pullback φ∗
wm of the metric m in (5) by φw

we have

[φ∗
wm](z, z̄) = 4

(1 + |z + 
(|z − zk|)w|2)2
(
φ′
w(z, z̄)

)∗
φ′
w(z, z̄),
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where

φ′
w(z, z̄) = Id+


′(|z − zk|)
2|z − zk|

[
w(z̄ − z̄k) w(z − zk)

w̄(z̄ − z̄k) w̄(z − zk)

]

is the Jacobian matrix; that is, the pullback is given by

φ∗
wm = 1

2
[dz̄ dz][φ∗

wm][dz dz̄]�.

Clearly, on CP1 we have �0 = − (1+|z|2)2
4 4∂z̄∂z. A straightforward calculation also

shows

�w −�0 =
(2
(|z − zk|)(zw̄ + z̄w)

1 + |z|2 − 
′(|z − zk|)
2|z − zk|

(
w(z̄ − z̄k)+ w̄(z − zk)

))
�0

+ (1 + |z|2)2
4

(
2∂z


′(|z − zk|)
|z − zk| w(z − zk)∂z + 2∂z̄


′(|z − zk|)
|z − zk| w̄(z̄ − z̄k)∂z̄

)
+ O(|w|2),

(25)

where O(|w|2) stands for a second order operator with smooth coefficients supported on

supp 
′(|z − zk|) and uniformly bounded by C|w|2.
Notice that the domain D of�w does not depend onw (as the operators�w with

w = 0 and w �= 0 are only different on supp 
′(|z − zk|), the description of the domain

D of � given after f-la (12) also applies to the domain of �w with w �= 0). Consider

D as a Hilbert space endowed with graph norm of �0. Let λ be an eigenvalue of �0 of

multiplicitym. Let � be a closed curve enclosing λ but no other eigenvalues of �0. Then

‖(�0 − ξ)−1;B(L2;D)‖ � c‖(�0 − ξ)−1;B(L2)‖ � C

uniformly in ξ ∈ �. The resolvent (�w − ξ)−1 exists for all ξ ∈ � provided |w| is so small

that ‖(�w − �0);B(D ;L2)‖ < 1/C. Moreover, ‖(�w − ξ)−1 − (�0 − ξ)−1;B(L2,D)‖ → 0 as

|w| → 0 uniformly in ξ ∈ �. Therefore the total projection Pw for the eigenvalues of �w

lying inside � is given by

Pw = − 1

2π i

∮
�

(�w − ξ)−1 dξ .

The continuity of Pw implies that dim PwL2 = dim P0L2 = m, that is, the sum of multi-

plicities of the eigenvalues of �w lying inside � is equal to m (provided |w| is small);

these eigenvalues are said to form the λ-group. As is well-known, single eigenvalues are
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not necessarily differentiable with respect to w even in the case of analytic perturba-

tions [12], for this reason we study symmetric functions for the λ-group and find their

derivatives with respect to w and w̄.

Lemma 5.1. Consider the power sum symmetric polynomial pn(w) = ∑m
j=1 λ

n
j (w) of

degree n = 0, 1, 2, . . . for the λ-group λ1, . . . , λm. As w → 0 we obtain

pn(w) = mλn + nλn−1(Aw + Bw̄)+ O(|w|2),

where λ = λj(0), j = 1, . . . ,m, is the eigenvalue of �0 of multiplicity m. Moreover, the

coefficients A and B are given by

A = 2i lim
ε→0+

m∑
j=1

∮
|z−zk |=ε

(∂z�j)
2 dz, B = −2i lim

ε→0+

m∑
j=1

∮
|z−zk |=ε

(∂z̄�j)
2 dz̄, (26)

where integration runs around the conical point at zk through two spheres CP1 glued

to each other along the cut [z0, zk] and �1, . . . ,�m are (real) normalized eigenfunc-

tions of �0 corresponding to the eigenvalue λ; that is, �j = �j, ‖�j;L2(X)‖ = 1, and

span{�1, . . . ,�m} = P0L2(X). �

Proof. We have pn(w) = Tr(�n
wPw). Thus

pn(w)−mλn = − 1

2π i
Tr
∮
�

(ξn − λn)(�w − ξ)−1 dξ

= − 1

2π i
Tr
∮
�

(ξn − λn)

∞∑
k=1

(�0 − ξ)−1
[
(�0 −�w)(�0 − ξ)−1

]k
dξ .

Taking into account that ∂ξ (�w − ξ)−1 = (�w − ξ)−2 and

Tr ∂ξ
(
(�0 −�w)(�0 − ξ)−1

)k = k Tr(�w − ξ)−1
[
(�0 −�w)(�0 − ξ)−1

]k
(here we applied the identity TrAB = TrBA) we obtain

pn(w)−mλn = − 1

2π i
Tr
∮
�

(ξn − λn)

∞∑
k=1

1

k
∂ξ
[
(�0 −�w)(�0 − ξ)−1

]k
dξ

= 1

2π i
Tr
∮
�

nξn−1
∞∑
k=1

1

k

[
(�0 −�w)(�0 − ξ)−1

]k
dξ
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= 1

2π i
Tr
∮
�

n(ξn−1 − λn−1)

∞∑
k=1

1

k

[
(�0 −�w)(�0 − ξ)−1

]k
dξ

+ 1

2π i
nλn−1 Tr

∮
�

∞∑
k=1

1

k

[
(�0 −�w)(�0 − ξ)−1

]k
dξ

= 1

2π i
Tr
∮
�

n(n− 1)ξn−2
∞∑
k=1

1

k(k + 1)
(�0 −�w)

[
(�0 −�w)(�0 − ξ)−1

]k
dξ

+ 1

2π i
nλn−1 Tr

∮
�

∞∑
k=1

1

k

[
(�0 −�w)(�0 − ξ)−1

]k
dξ

= 1

2π i
nλn−1 Tr

∮
�

(�0 −�w)(�0 − ξ)−1 dξ + O(|w|2);

here we integrated by parts two times and implemented (25) to estimate the remainder.

Thus

pn(w)−mλn = nλn−1 Tr(�w −�0)P0 + O(|w|2)

= nλn−1
m∑
j=1

(
(�w −�0)�j,�j

)
L2(X)

+ O(|w|2).
(27)

Thanks to (25) we also have

(
(�w −�0)�j,�j

)
L2(X)

= Ajw + Bjw̄ + O(|w|2), (28)

where

Aj =
∫ [

4

(1 + |z|2)2
(
2
(|z − zk|)z̄

1 + |z|2 −

′(|z − zk|)
2|z − zk| (z̄ − z̄k)

)
λ�2

j

−2

′(|z − zk|)

|z − zk| (z − zk)(∂z�j)
2

]
dz ∧ dz̄

−2i
,

Bj =
∫ [

4

(1 + |z|2)2
(
2
(|z − zk|)z

1 + |z|2 −

′(|z − zk|)
2|z − zk| (z − zk)

)
λ�2

j

−2

′(|z − zk|)

|z − zk| (z̄ − z̄k)(∂z̄�j)
2

]
dz ∧ dz̄

−2i
;
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here thanks to 
 the integrand is supported near zk and integration runs through two

spheres glued along the cut [z0, zk]. Finally, the Stokes theorem implies

Aj = 2i lim
ε→0+

(∮
|z−zk |=ε

(∂z�j)
2 dz − λ

∮
|z−zk |=ε

�2
j (1 + |z|2)−2 dz̄

)
,

Bj = −2i lim
ε→0+

(∮
|z−zk |=ε

(∂z̄�j)
2 dz̄ − λ

∮
|z−zk |=ε

�2
j (1 + |z|2)−2 dz

)
.

(29)

Since�j(p) � C for p ∈ X , the last integrals in both formulas (29) tend to zero as ε → 0+.

The assertion follows from (27), (28), and (29). �

Lemma 5.2. Consider the elementary symmetric polynomials

en(w) =
∑

1�j1<j2<···<jn�m

λj1(w) λj2(w) · · · λjn(w), n = 1, . . . ,m,

for the λ-group λ1, . . . , λm. As w → 0 we have

en(w) =
(
m

n

)(
λn + nλn−1(Aw + Bw̄)

)
+ O(|w|2)

with A and B given in (26). �

Proof. The proof by induction relies on Lemma 5.1 and the relation

en(w) = 1

n

n∑
j=1

(−1)j−1en−j(w)pj(w),

where e0(w) = 1. We omit details. �

Lemma 5.3. As w → 0 for the λ-group λ1, . . . , λm we have

m∑
j=1

1(
ξ − λj(w)

)2 = m

(ξ − λ)2
+ 2(Aw + Bw̄)(

ξ − λ
)3 + O(|w|2)

with A and B given in (26). �

Proof. As is well known,

m∏
j=1

(ξ − λj(w)) =
m∑
j=0

ξm−j(−1)jej(w).

Conical Metrics of Curvature 1 and det′ � 3259

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/10/3242/4161647 by Vanier Library user on 01 M
ay 2022



Notice that

m∑
j=1

1(
ξ − λj(w)

)2 = −∂ξ
m∑
j=1

1

ξ − λj(w)
= −∂ξ

∑m−1
j=0 (m− j)ξm−j−1(−1)jej(w)∑m

j=0 ξ
m−j(−1)jej(w)

.

We differentiate the right hand side and use Lemma 5.2 to derive asymptotics

of resulting numerator and denominator as w → 0. We obtain

m∑
j=1

1(
ξ − λj(w)

)2 = m
(ξ − λ)2m−2 − 2(m− 1)(ξ − λ)2m−3(Aw + Bw̄)+ O(|w|2)

(ξ − λ)2m − 2m(ξ − λ)2m−1(Aw + Bw̄)+ O(|w|2) .

This implies the assertion. �

6 Variation of ln det′ � Under Perturbation of Conical Singularities

Proposition 6.1. Let w ∈ C correspond to perturbation of the conical singularity at Pk

by shifting zk to zk +w (see Sec. 5 for details). Then

∂w ln det′
� �w=0= b(0)− b(−∞)

2
, ∂w̄ ln det′

� �w=0= b(0)− b(−∞)

2
,

where b(λ) is the coefficient in the asymptotic (13) of the special solution Y(λ) ∈ L2(X)

to (�∗ − λ)Y(λ) = 0 growing near Pk as x−1, where x is the distinguished holomorphic

parameter x = √
z − zk. �

Proof. First we recall that only symmetric polynomials for a λ-group but not sin-

gle eigenvalues can be differentiated with respect to w or w̄. Similarly, the series

Tr(�− λ)−2 = ∑∞
j=0(λj − λ)−2 cannot be differentiated term by term, however, thanks to

Lemma5.3we can alwaysdifferentiate partial finite sums corresponding to the λ-groups.

Thus, if summation with respect to j runs throughm eigenvalues λk = λk+1 = · · · = λk+m
forming λk-group, then by Lemma 5.3 we obtain

∂w

(∑
j

1

(λj − λ)2

)
�w=0= − 2A

(λk − λ)3
.

Let us rewrite the formula (26) for the coefficients A in terms of the local parameter x:

A = i lim
ε→0+

∑
j

∮
|x|=ε

1

x
(∂x�j)

2 dx. (30)
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By Lemma 3.1 the asymptotic (15) of�j can be differentiated, we have ∂x�j = bj+O(|x|1−ε)

with any ε > 0 as x → 0. This together with (30) implies A = 2π
∑

j b
2
j , and therefore

∂w

(∑
j

1

(λj − λ)2

)
�w=0= −4π

∑
j

b2
j

(λj − λ)3
.

Nowwe are ready to compute the partial derivative of zeta function with respect

tow atw = 0. Let �ξ be a contour running at a sufficiently small distance ε > 0 around

the cut (−∞, ξ ], starting at −∞ + iε, and ending at −∞ − iε. We have

∂wζ(s;�− ξ) �w=0= 1

2π i(s− 1)

∫
�ξ

(λ− ξ)1−s∂w Tr(�− λ)−2 �w=0 dλ

= 2i

(s− 1)

∫
�ξ

(λ− ξ)1−s
∞∑
j=0

b2
j

(λj − λ)3
dλ.

Thanks to Lemma 3.3 we can integrate by parts to obtain

∂wζ(s;�− ξ) �w=0= −i
∫
�ξ

(λ− ξ)−s
∞∑
j=0

b2
j

(λj − λ)2
dλ .

Now we use the equality (16) from Lemma 3.3 together with Lemma 3.2 and arrive at

∂wζ(s;�− ξ) �w=0= −i
16π2

∫
�ξ

(λ− ξ)−s
(
Y(λ),Y(λ)

)
dλ

= −i
4π

∫
�ξ

(λ− ξ)−s
d

dλ
{b(λ)− b(−∞)} dλ,

where b(−∞) = limλ→−∞ b(λ). Using Lemma 4.1 and integrating by parts once again we

get

∂wζ(s;�− ξ) �w=0= −is
4π

∫
�ξ

(λ− ξ)−s−1 {b(λ)− b(−∞)} dλ.

Since λ �→ b(λ) is holomorphic inC\σ(�) and in a neighbourhood of zero (see Lemma 3.2),

the Cauchy Theorem implies

∂wζ
′(0;�) �w=0= 1

4π i

∫
�ξ

(λ− ξ)−1 {b(λ)− b(−∞)} dλ �ξ=0= b(−∞)− b(0)

2
.

Since det′
� = exp{−ζ ′(0)}, this completes the proof. �
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Now the explicit formulas for b(0) and b(−∞) (see Lemmas 4.1 and 4.2 in

Section 4) together with Proposition 6.1 imply the following Theorem.

Theorem 6.2. Let X be a compact Riemann surface of genus g � 0 and let f be a

meromorphic function on X of degree N with N simple poles and M = 2N + 2g − 2

simple critical points P1, . . . ,PM . Let zk = f (Pk) be the critical values of f . Consider the

determinant det′
� of the (Friedrichs) Laplacian� in the conicalmetric f ∗mwith constant

curvature 1 on X as a function on the moduli spaceHg,N(1, . . . , 1) of pairs (X , f )with local

coordinates z1, . . . , zM . Then this function satisfies the following system of differential

equations

∂ ln det′
�

∂zk
= − 1

12
SSch(xk) �xk=0 −1

4

z̄k
1 + |zk|2 , k = 1, . . . ,M , (31)

where xk(P) = √
f (P)− f (Pk) is the distinguished local parameter near the critical point

Pk and SSch is the Schiffer projective connection on X . �

The system (31) admits explicit integration. In [17] (see also [14, 18]) it was shown

that the function det�B |τ |2, where τ is the so calledBergman tau-function on theHurwitz

space Hg,N(1, . . . , 1), satisfies

∂ ln(det�B |τ |2)
∂zk

= − 1

12
SSch(xk) �xk=0, k = 1, . . . ,M ;

in genus 0 the factor det�B should be omitted. This together with Theorem 6.2

immediately leads to the main result of the present article:

Theorem 6.3. The explicit formula

det′
� = C det�B|τ |2

M∏
k=1

(1 + |zk|2)−1/4 (32)

is valid for the determinant of the Friedrichs extension� of the Laplacian on (X , f ∗m). �

Remark (SU(2)-invariance). We recall that under the linear fractional transformations

z �→ az+b
cz+d , ad− bc = 1, the function τ 2 transforms as

τ 2 �→ τ 2
M∏
k=1

(czk + d)−1/2;
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see [18, Lemma 1]. Notice that under the SU(2) transformation z �→ d̄z−c̄
cz+d , |d|2 + |c|2 = 1,

the factor F = ∏M
k=1(1 + |zk|2)−1/4 in (32) transforms as

F �→ F
M∏
k=1

|czk + d|1/2.

Thus we see that the right hand side in (32) is SU(2)-invariant as it should be due to

SU(2)-invariance of det′
�. �
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