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Abstract: We study the regularized determinant of the Laplacian as a functional on
the space of Mandelstam diagrams (noncompact translation surfaces glued from finite
and semi-infinite cylinders). A Mandelstam diagram can be considered as a compact
Riemann surface equipped with a conformal flat singular metric |ω|2, where ω is a
meromorphic one-form with simple poles such that all its periods are pure imaginary
and all its residues are real. The main result is an explicit formula for the determinant
of the Laplacian in terms of the basic objects on the underlying Riemann surface (the
prime form, theta-functions, the canonical meromorphic bidifferential) and the divisor
of the meromorphic form ω. As an important intermediate result we prove a decomposi-
tion formula of the type of Burghelea–Friedlander–Kappeler for the determinant of the
Laplacian for flat surfaces with cylindrical ends and conical singularities.

1. Introduction

Formally, a (planar) Mandelstam diagram is a strip � = {z ∈ C : 0 ≤ �z ≤ H} with
a finite number of slits parallel to the real line. These slits are either finite segments or
half-lines, the sides of different slits and parts of the boundary of the strip are identified
according to a certain gluing scheme. This gives a surface that is made from a finite
number of finite and semi-infinite cylinders. In addition, the diagram can be twisted via
cutting vertically the finite (“interior”) cylinders before gluing back the two parts with
certain twists; see, e. g., [12,13] for more details, explanation of the terminology and
proper references to the original physical literature.

One thus obtains a noncompact translation surfaceM or, more precisely, a flat surface
with trivial holonomy that has conical singularities (at the end points of the slits) and
cylindrical ends.

One can also view M as a compact Riemann surface (i. e., an algebraic curve) with
the flat conformal metric |ω|2, where ω is the meromorphic differential on M obtained
from the 1-form dz in a small neighborhood of a nonsingular point of M via parallel
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Fig. 1. Mandelstam diagram

transport. The differential ω has zeros at the end points of the slits and first order poles
at the points at infinity of cylindrical ends. All the periods of ω are pure imaginary, all
the residues at the poles of ω are real.

Moving in the opposite direction, one can get aMandelstam diagram from a Riemann
surface and a meromorphic differential with pure imaginary periods and simple poles
with real residues. More precisely, let X be a compact Riemann surface of genus g
with n ≥ 2 marked points P1, . . . , Pn and let α1, . . . , αn be nonzero real numbers such
that α1 + · · · + αn = 0. Then there exists a unique meromorphic differential ω on X
with simple poles at P1, . . . , Pn such that all the periods of ω all pure imaginary and
Res(ω, Pk) = αk , k = 1, . . . , n. Moreover, to such a pair (X, ω) there corresponds a
Mandelstam diagram (with n semi-infinite cylinders) (see [12]).

The space of Mandelstam diagrams with fixed residues α1, . . . , αn (i. e., with fixed
circumferences, |O1|, . . . , |On| of the cylindrical ends) is coordinatized by the circum-
ferences, hi , of the interior cylinders; the interaction times τ j (see [12] for explanation
of the terminology)—the real parts of the z-coordinates of the zeros of the differential
ω (we can assume that the smallest interaction time, τ0, is equal to 0, since this can be
achieved using a horizontal shift of the diagram) and the twist angles θk .

Mandelstam diagrams (with fixed residues α1, . . . , αn) give a cell decomposition of
the moduli space Mg,n of compact Riemann surfaces of genus g with n marked points.
The top-dimensional cell is given by the set Sg,n of simple Mandelstam diagrams, for
these diagrams the corresponding meromorphic differential ω has only simple zeros.
The parameters

hi , i = 1, . . . , g; τ j , j = 1, . . . 2g + n − 3; θk, k = 1, . . . , 3g + n − 3 (1.1)

give global coordinates on Sg,n , see Fig. 1 (taken from [13, p. 93]) for the case g =
2, n = 4, three poles with negative residues, one pole with positive residue.

From now on we refer to the coordinates (1.1) as moduli.
The goal of the present paper is to study the regularized determinant of the Laplacian

on a such noncompact translation surfacesM as a function of moduli (for simplicity we
consider only the top dimensional cell). The title of the paper is chosen to emphasize
the relation with the paper [7] (see also [41]), where such a determinant was defined
in a heuristic way. It should be said that in contrast to [7] we are working here with
scalar Laplacians, the Laplacians acting on spinors will be considered elsewhere. It is
also worth mentioning that the construction in [7] and [41] has a priori no relation with
spectral theory and relies rather on Hadamard type regularizations once local parameters
near the singularities are chosen. In [7], the question of a spectral definition was raised,
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this was a motivation for this work. In the Appendix B, authored by A. Kokotov and
D. Korotkin, the relationship between our formulas and the earlier heuristic formulas of
[41] and also [21] will be addressed.

The scheme of the work can be briefly explained as follows. Assume for simplicity
that the Mandelstam diagram M has two cylindrical ends. Then the Laplacian � on M

can be considered as a perturbation of the “free” Laplacian �̊ on the flat infinite cylinder
S1( H

2π ) × R obtained from the strip � via identifying the points x ∈ R with points
x + i H ∈ R + i H . Then, following the well-known idea (see, e. g., [3,16,35]), one can
introduce the relative operator zeta-function

ζ(s;�, �̊) = 1


(s)

∫ ∞

0
Tr(e−t� − e−t�̊)t s−1 dt (1.2)

and define the relative zeta-regularized determinant of the operator� (having continuous
spectrum, possibly with embedded eigenvalues—see an example in Appendix A.2) via

det(�, �̊) := e−ζ ′(0;�,�̊). (1.3)

In case of n ≥ 3 cylindrical ends the definition of det(�, �̊) is similar: as the free
Laplacian �̊ one takes the Laplacian on the diagram with n semi-infinite slits starting at
τ0 = 0 (a sphere with n cylindrical ends).

Our main result is an explicit formula for det(�, �̊) in terms of classical objects on
the Riemann surface M (theta-functions, the prime form, the Bergman kernel) and the
divisor of the meromorphic differential ω.

As a first step, we establish variational formulas for log det(�, �̊) with respect to
moduli. Then, as a second step we integrate the resulting system of PDE and get an
explicit expression for det(�, �̊) (up to moduli independent constant). The derivation
of the above mentioned variational formulas goes as follows.

First we prove a decomposition formula of the Burghelea–Friedlander–Kappeler
type for det(�, �̊). This formula cannot be considered as completely new: for smooth
manifolds with cylindrical ends, analogous formulas can be found in [32] and [37].
We believe that it should be possible to establish our result just following the way
of [32] or [37] with suitable modifications. Indeed, the presence of conical points and
our slightly different method of regularization (in [32] and [37] the authors use the
operators of the Dirichlet problem in semi-cylinders as “free”, whereas we are using
here for that purpose the Laplace operator in the infinite cylinder) should not present any
serious additional difficulty. We have chosen here a different approach that avoids the
full machinery of scattering theory on manifolds with cylindrical ends; corresponding
results of the scattering theory can be found, e.g., in [5,6,32,33,37,38]). Following [3],
it is fairly straightforward to get a gluing formula for non-zero values of the spectral
parameter so that the only missing ingredient is a precise description of the resolvent
of the operator � at the bottom of its continuous spectrum (see Theorem 2 below). The
latter can then be obtained using methods of elliptic boundary value problems.

Using the decomposition formula,we reduce the derivation of the variational formulas
for det(�, �̊) to a simpler case of Laplacians (with discrete spectra) on compact conical
surfaces, which are flat everywhere except for standard fixed “round” ends. After that,
using some version of the classical Hadamard formula for the variation of the Green
function of a plane domain (see Proposition 2), we derive the variational formulas for
the latter simpler case.
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The resulting system of PDE for log det(�, �̊) (where the so-called Bergman projec-
tive connection is the main ingredient) is a complete analog of the governing equations
for the Bergman tau-functions on the Hurwitz spaces and moduli spaces of holomorphic
differentials [22–24]. Relying on the results obtained in [23,24], it is not hard to propose
an explicit formula for the solution of this system (its main ingredient, the Bergman
tau-function on the space of meromorphic differentials of the third kind, was recently
introduced by Kalla and Korotkin in [19]).

The proof of the thus conjectured formula is a direct calculation (similar to that from
[23]). For the sake of simplicity we present this calculation for genus one Mandelstam
diagrams only.

2. Relative Determinant and Decomposition Formula

Consider M as a noncompact flat surface with cylindrical ends and conical points at
the ends of the slits of � = {z ∈ C : 0 ≤ �z ≤ 1}. We shall use x = �z as a
(global) coordinate on M. Let P be the set of all conical points on M. Assume that
R > 0 is so large that there are no points in P with coordinate x /∈ (−R, R). Denote

 = {p ∈M : |x | = R} and consider the (positive) selfadjoint Friedrichs extension�D

in
of the Laplacian on Min = {p ∈ M : |x | ≤ R} with Dirichlet conditions on 
. Since
M is conformally compact, for any f ∈ C∞(
), the Dirichlet problem

�u = 0 on M\
, u = f on 


has a unique bounded at infinity solutionu.This solution is such thatu = f̃−(�D
in)

−1� f̃
on Min , where f̃ ∈ C∞(Min\P) is any extension of f . Introduce the Dirichlet-to-
Neumann operator

N f = lim
x→R+

〈−∂xu(−x), ∂xu(x)
〉
+ lim

x→R−
〈
∂xu(−x),−∂xu(x)

〉
,

where 〈·, ·〉 ∈ L2(
−) ⊕ L2(
+) ≡ L2(
) with 
± = {p ∈ M : x = ±R}. The
operator N is a first order elliptic operator on 
 which has zero as an eigenvalue. The
modified zeta regularized determinant det∗N (i.e. the zeta regularized determinant with
zero eigenvalue excluded) is well-defined [2]. By det�D

in we denote the zeta regularized
determinant of �D

in . In this section we prove

Theorem 1. The decomposition formula

det(�, �̊) = C det∗N · det�D
in (2.1)

is valid, where N, �D
in, and C depend on R, however C is moduli (that is hk , θk , τk)

independent.

As it was mentioned in Sect. 1, this theorem can be considered as a version of the
analogous results for smooth manifolds with cylindrical ends in [32] and [37]. However,
we choose here a different approach that avoids the full machinery of b-calculus [33]
heavily used in [32] as well as spectral representations and elements of the scattering
theory on manifolds with cylindrical ends [8,15,36] used in [37]; note that similar
spectral representations and results of the scattering theory are also a part of results [33]
used in [32] (for results of the scattering theory on manifolds with cylindrical ends see
also [5,6,38,39]).
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As in [37] our starting point is the Burghelea–Friedlander–Kappeler type decompo-
sition of det(�− λ, �̊− λ), obtained in [3] for negative (regular) values of the spectral
parameter λ. (Although only smooth manifolds are considered in [3], it is fairly straight-
forward to see that on Mandelstam diagrams the decomposition remains valid outside
of conical points.) In order to justify the decomposition for det(�, �̊) (i.e. at the bottom
λ = 0 of the continuous spectrum of � and �̊), one has to study the behavior of all
ingredients of the decomposition formula as λ → 0− (i.e. zeta regularized determi-
nants of Laplacians and Dirichlet-to-Neumann operators) and then pass to the limit. Our
approach relies on precise information on the behavior of the resolvent of the operator�
at λ = 0 (see Theorem 2 below) obtained by well-known methods of elliptic boundary
value problems and the Gohberg–Sigal theory of Fredholm holomorphic functions; see
e.g. [28,29,31] and [14] (or e.g. [29, Appendix]). As a consequence, we immediately
get precise information on the behavior of the Dirichlet-to-Neumann operator and an
asymptotic of its determinant as λ → 0. The latter one also provides the integrand
in (1.2) with asymptotic as t → +∞. This together with asymptotic of the integrand as
t → 0 (obtained in a standard way) prescribes the behavior of det(� − λ, �̊ − λ) as
λ → 0− and completes justification of the decomposition formula for det(�, �̊).

2.1. Resolvent meromorphic continuation and its singular part at zero. In this subsec-
tion we operate with Friedrichs extensions �ε of the Laplacian � in some weighted
spaces L2

ε(M) with different values of weight parameter ε. For this reason we reserve
the notation �0 for the (selfadjoint nonnegative) Friedrichs extension of the Laplacian
� in L2(M) initially defined on the set C∞0 (M\P) of smooth compactly supported
functions.

The weights we will be using are defined in the following way. Take some positive
function ρ ∈ C∞(R) that coincides with x �→ exp(|x |) for large values of |x |. We then
define the exponential weights eε by eε = ρε . Let L2

ε(M) be the weighted space with
the norm ‖u; L2

ε(M)‖ = ‖eεu; L2(M)‖. For any two Banach (or Hilbert) spaces X and
Y, we will denote by B(X,Y) the space of all bounded operators from X to Y.

The aim of this section is the following theorem.

Theorem 2. Let ε be a sufficiently small positive number. Then the function

μ �→ (
�0 − μ2)−1 − i

2μ

(·, 1)L2(M)
∈ B

(
L2

ε(M), L2−ε(M)
)

is holomorphic in the union C
+
ε of C

+ = {μ ∈ C : �μ > 0} with the disc |μ| < ε.

In other words, the theorem states that the resolvent (�0 − μ2)−1 viewed as the
holomorphic function

C
+ � μ �→ (�0 − μ2)−1 ∈ B

(
L2

ε(M), L2−ε(M)
)

has ameromorphic continuation toC
+
ε , which is holomorphic inC

+
ε \{0} and has a simple

pole at zero with the rank one operator L2
ε(M) � f �→ i

2 ( f, 1)L2(M) ∈ L2−ε(M) as the
residue.

The scheme of the proof can be described as follows. We consider the Friedrichs
m-sectorial extension �ε of the Laplacian � initially defined on C∞0 (M\P) and act-
ing in the weighted space L2

ε(M). (Here m-sectorial means that the numerical range
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{(e2ε�εu, u)L2(M) ∈ C : u ∈ Dε} and the spectrum of a closed operator �ε in L2
ε(M)

with the domainDε are both in some sector {λ ∈ C : | arg(λ + c)| ≤ ϑ < π/2, c > 0}.)
Then we introduce a certain rank n extension of the operator �ε − μ2 (n stands for the
number of cylindrical ends on M). The inverse of that extension provides the resolvent
(�0−μ2)−1 with the desired meromorphic continuation toC

+
ε . The proof of Theorem 2

is preceded by Lemmas 1, 2 and Proposition 1.
In order to introduce �ε we need to obtain some estimates on the quadratic form

qε[u, u] = ‖∇u; L2
ε(M)‖2 + ((∂xe2ε)(∂xu), u

)
L2(M)

, u ∈ C∞0 (M\P),

of theLaplacian� in L2
ε(M). Denote by H1

ε (M) theweighted Sobolev space of functions
v = e−εu, u ∈ H1(M), with the norm ‖v; H1

ε (M)‖ = ‖eεv; H1(M)‖; here H1(M) is
the completion of the set C∞0 (M\P) in the norm

‖u; H1(M)‖ =
√
‖u; L2(M)‖2 + ‖∇u; L2(M)‖2.

Clearly, |∂xe2ε(x)| ≤ Ce2ε(x),

|((∂xe2ε)(∂xu), u
)
L2(M)

| ≤ C‖∂xu; L2
ε(M)‖ · ‖u; L2

ε(M)‖
≤ C2δ−1‖u; L2

ε(M)‖2 + δ‖∇u; L2
ε(M)‖2, δ > 0,

and the norm in H1
ε (M) is equivalent to the norm

√‖u; L2
ε(M)‖2 + ‖∇u; L2

ε(M)‖2.
Thus for some δ > 0 and γ > 0 we obtain

| arg(qε[u, u] + γ ‖u; L2
ε(M)‖2)| ≤ ϑ < π/2,

δ‖u; H1
ε (M)‖2 − γ ‖u; L2

ε(M)‖2 ≤ �qε[u, u] ≤ δ−1‖u; H1
ε (M)‖2,

which shows that qε with domain H1
ε (M) is a closed densely defined sectorial form

in L2
ε(M). Therefore this form uniquely determines an m-sectorial operator �ε (the

Friedrichs extension of the Laplacian � : C∞0 (M\P) → L2
ε(M), see [20, Theo-

rem VI.2.1]) possessing the properties: (i) The domainDε of�ε is dense in H1
ε (M); (ii)

For all u ∈ Dε and v ∈ H1
ε (M) we have (e2ε�εu, v)L2(M) = qε[u, v]. This extension

scheme also gives the nonnegative selfadjoint Friedrichs extension �0 if we formally
set ε = 0; the operator �ε (with ε > 0) is non-selfadjoint. Due to conical points on M
the second derivatives of u ∈ Dε are not necessarily in L2

ε(M); see, e.g., [29].

Lemma 1. Equip the domain Dε of �ε with the graph norm

‖u;Dε‖ =
√
‖u; L2

ε(M)‖2 + ‖�εu; L2
ε(M)‖2. (2.2)

Then the continuous operator

�ε − μ2 : Dε → L2
ε(M) (2.3)

is Fredholm (or, equivalently, μ2 is not in the essential spectrum of �ε) if and only if for
any ξ ∈ R the point μ2− (ξ + iε)2 is not in the spectrum {0, 4π2�2|Ok |−2 : � ∈ N, 1 ≤
k ≤ n} of the selfadjoint Laplacian on the union of circles O1, . . . , On. The essential
spectrum of �ε is depicted on Fig. 2.

Proof. See Appendix. ��
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μ2

μ2

• • •

Fig. 2. Essential spectrum σess (�ε) of the operator �ε for ε > 0, where the points marked as filled circles
represent eigenvalues of the selfadjoint Laplacian on the union of circles O1, . . . , On , and solid lines are
parabolas of σess (�ε). Dashed line corresponds to the boundary |μ| = ε of the disc |μ| < ε. As ε → 0 the
parabolas collapse to rays forming the essential spectrum σess (�) = [0,∞)

Lemma 2. Take some functions C � μ �→ ϕk(μ) ∈ C∞(M\P) satisfying

ϕk(μ; p) =
{
eiμ|x |, p = (x, y) ∈ (−∞,−R − 1)× Ok (resp. p ∈ (R + 1,∞)× Ok),

0, p ∈M\(−∞,−R)× Ok (resp. p ∈M\(R,∞)× Ok),

(2.4)
if Ok corresponds to a cylindrical end directed to the left (resp. to the right). Let μ ∈ C

+

and |μ| < ε, where ε > 0 is sufficiently small. Then for any f ∈ L2
ε(M) and some

ck ∈ C, which depend on μ and f , we have

(�0 − μ2)−1 f −
n∑

k=1
ckϕk(μ) ∈ Dε . (2.5)

Proof. See Appendix. ��
Clearly, (�−μ2)ϕk(μ) ∈ C∞0 (M\P) ⊂ L2

ε(M). Thus Lemma 2 implies that the linear
combinations of ϕ1(μ), . . . , ϕn(μ) are asymptotics of (�0−μ2)−1 f as |x | → ∞with a
remainder in the spaceDε of functions exponentially decaying at infinity. We introduce
a rank n extension A(μ) : Dε ×C

n → L2
ε(M) of the m-sectorial operator �ε − μ2 by

considering the values of � − μ2 not only on Dε but also on the linear combinations∑
ckϕk(μ). The continuous operator A(μ) acts by the formula

Dε × C
n � (u, c) �→ A(μ)(u, c) = (�ε − μ2)u +

n∑
k=1

ck(�− μ2)ϕk(μ) ∈ L2
ε(M).

(2.6)
We shall also use the operator J(μ) mapping Dε × C

n into L2−ε(M) in the following
natural way:

Dε × C
n � (u, c) �→ J(μ)(u, c) = u +

∑
ckϕk(μ) ∈ L2−ε(M), |μ| < ε.

The functions ϕk(μ), 1 ≤ k ≤ n, are linearly independent and for |μ| < ε we have
ϕk(μ) /∈ Dε . Hence J(μ) yields an isomorphism between Dε × C

n and its range {u +∑
ckϕk(μ) : u ∈ Dε, c ∈ C

n} ⊂ L2−ε(M).
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Belowwewill rely on some results of the theory of Fredholm holomorphic functions,
see e.g. [14] or [28, Appendix A]. Recall that an operator function μ �→ F(μ) ∈
B(X,Y), where X and Y are some Banach spaces, that is holomorphic in a domain �

is called Fredholm if the operator F(μ) : X → Y is Fredholm for all μ ∈ � and
F(μ) is invertible for at least one value of μ. The spectrum of a Fredholm holomorphic
function F (which is the subset of �, where F(μ) is not invertible) consists of isolated
eigenvalues of finite algebraic multiplicity. Letψ0 be an eigenvector corresponding to an
eigenvalueμ0 of F (i.e.ψ0 ∈ ker F(μ0)\{0}). The elementsψ1, . . . ψm−1 inX are called
generalized eigenvectors if they satisfy

∑�
j=0 1

j !∂
j
μF(μ0)ψ�− j = 0, � = 1, . . . ,m − 1.

If there are no generalized eigenvectors and dim ker F(μ0) = 1 , we say that μ0 is
a simple eigenvalue of F . Let μ0 be a simple eigenvalue of a Fredholm holomorphic
function F . Then in a neighborhood of μ0 the inverse F(μ)−1 of the operator F(μ)

admits the representation

F(μ)−1 = ω0(·) ψ0

μ− μ0
+ H(μ), (2.7)

where μ �→ H(μ) ∈ B(X,Y) is holomorphic, ψ0 ∈ ker F(μ0)\{0}, and ω0 ∈
ker F∗(μ0) is an eigenvector of the adjoint holomorphic function μ �→ F∗(μ) =(
F(μ)

)∗ ∈ B(Y∗,X∗) such that the value of the functional ω0(·) on ∂μF(μ0)ψ0 is
1. Note that the converse is also true, i.e. (2.7) implies that μ0 is a simple eigenvalue of
F and ψ0 ∈ ker F(μ0). For the proof of (2.7) we refer to [14, Theorem 7.1] and [28,
Theorem A.10.2].

Proposition 1. Let ε > 0 be sufficiently small. Then

1. μ �→ A(μ) ∈ B
(
Dε × C

n, L2
ε(M)

)
is a Fredholm holomorphic operator function

in the disc |μ| < ε and A(μ) is invertible for all μ ∈ C
+.

2. kerA(0) = {J(0)−1C : C ∈ C} and kerA(0)∗ = {e−2εC : C ∈ C}.
3. There are no solutions (v, d) to the equation (∂μA(0))(J(0))−11 + Aε

0(v, d) = 0,
i.e. there are no generalized eigenvectors andμ = 0 is a simple eigenvalue ofA(μ).

4. In the disc |μ| < ε we have

A(μ)−1 = i

2μ
(·, 1)L2(M)J(0)

−11 +H(μ),

where μ �→ H(μ) ∈ B
(
L2

ε(M),Dε × C
n
)
is holomorphic.

5. For μ ∈ C
+ with |μ| < ε the operators J(μ)A(μ)−1 and (�0 −μ2)−1 coincide as

elements of B(L2
ε(M), L2−ε(M)). Thus J(μ)A(μ)−1 provides the resolvent

C
+ � μ �→ (�0 − μ2)−1 ∈ B

(
L2

ε(M), L2−ε(M)
)

with meromorphic continuation to the disc |μ| < ε.

Proof. 1. For |μ| < ε the operator A(μ) is Fredholm as a finite-rank extension of a
Fredholm operator, see Lemma 1. It is easy to see that for any (u, c) ∈ Dε × C

n the
function μ �→ A(μ)(u, c) is holomorphic in the disc |μ| < ε. Assume, in addition, that
μ ∈ C

+. Then for any (u, c) ∈ Dε×C
n we have J(μ)(u, c) ∈ L2(M) andμ2 is a regular

point of the nonnegative selfadjoint operator �0. Hence dim kerA(μ) = 0. Indeed, for
any (u, c) ∈ kerA(μ)we have (�0−μ2)J(μ)(u, c) = 0, which implies J(μ)(u, c) = 0,
and therefore v = 0 and a = 0. Besides, by Lemma 2 for any f ∈ L2

ε(M) we have



Spectral Determinants on Mandelstam Diagrams 571

(�0 − μ2)−1 f = u +
∑

ckϕk(μ) with u ∈ Dε and c ∈ C
n . Therefore A(μ)(u, c) = f

and the operator A(μ) is invertible. Assertion 1 is proved.
2. For any element (u, c) ∈ kerA(0) set ũ = J(0)(u, c).Then ũ is a bounded solution

to �ũ = 0 onM. Since the latter is conformally compact ũ is a constant and this proves
the first equality in Assertion 2.

For v in the kernel of the adjoint operator A(0)∗ : L2
ε → D∗

ε × C
n and any (u, c) ∈

Dε × C
n we have

(�εu, v)L2
ε (M) +

∑
ck(�ϕk(0), v)L2

ε (M) = 0.

Therefore v is an element in ker(�ε)
∗ ⊂ Dε satisfying (�ϕk(0), v)L2

ε (M) = 0, 1 ≤ k ≤
n; here (�ε)

∗ is the adjoint to �ε m-sectorial operator in L2
ε(M) with domain Dε ; see

Proof of Lemma 1 in Appendix. Separation of variables in the cylindrical ends gives

e2ε(x)v(x, y) = Akx +
∑
�∈Z

B�
k e

2π |Ok |−1(−|�x |+i�y), (2.8)

where Ak and B�
k are some complex coefficients. Next we show that Ak = 0. Consider,

for instance, a right cylindrical end (with cross-section Ok). Then by using the Green
formula we get

0 = (�ϕk(0), v)L2
ε (M) = lim

T→+∞

∫ T

R

∫
Ok

e2ε(x)�ϕk(0; x, y)v(x, y) dx dy

= lim
T→+∞

∫
Ok

ϕk(0; T, y)∂x (e2εv)(T, y) dy = |Ok |Ak

and hence Ak = 0. Similarly one can see that Ak = 0 for the left cylindrical ends.
This together with (2.8) implies that e2εv is a bounded solution and thus it is a constant.
Assertion 2 is proved.

3. Taking the derivative in (2.6) we obtain ∂μA(0)J(0)−11 = ∑
�∂μϕk(0). The

equation for (v, d) takes the form

A(0)(v, d) = −
∑

�∂μϕk(0).

This equation has no solutions since its right hand side is not orthogonal to e−2ε ∈
kerA(0)∗. Indeed,

(
�∂μϕk(0), e−2ε

)
L2

ε (M)
= lim

T→+∞

∫ T

R

∫
Ok

�∂μϕk(0; x, y) dx dy

= − lim
T→+∞

∫
Ok

∂x∂μϕk(0; T, y) dy

= − lim
T→+∞

∫
Ok

i dy = −i |Ok |

if Ok corresponds to a right cylindrical end; in the same way one can check that
(�∂μϕk(0), e−2ε)L2

ε (M) = −i |Ok | for the left cylindrical ends. Thus
∑(

�∂μϕk(0), e−2ε
)
L2

ε (M)
= −2i
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and there are no generalized eigenvectors. Assertion 3 is proved.
4. Assertion 4 is the representation (2.7) written for A(μ)−1 and μ0 = 0. Indeed,

ψ0 = J(0)−11 is an eigenvector of A(μ) at μ = 0, and ω0(·) = i
2 (·, 1)L2(M) because

ω0
(
∂μF(μ0)ψ0

) = i

2

(
∂μA(0)J(0)−11, 1

)
L2(M)

= i

2

∑(
�∂μϕk(0), e−2ε

)
L2

ε (M)
= 1

as we need.
5. For μ ∈ C

+ with |μ| < ε and any f ∈ L2
ε(M) we have (�0 − μ2)−1 f =

J(μ)A(μ)−1 f , which means that the operators (�0 − μ2)−1 and J(μ)A(μ)−1 in
B
(
L2

ε(M), L2−ε(M)
)
are coincident. Clearly, μ �→ J(μ) is holomorphic in the disc

|μ| < ε. Thus the meromorphic in the disc |μ| < ε function μ �→ J(μ)A(μ)−1 ∈
B
(
L2

ε(M), L2−ε(M)
)
provides the resolvent (�0−μ2)−1 with the desired continuation.

Assertion 5 is proved. ��
Proof of Theorem 2. As a consequence of Assertions 4 and 5 of Proposition 1 we have

(�0 − μ2)−1 = J(μ)A(μ)−1 = i

2μ
(·, 1)L2(M) + �(μ),

�(μ) = i

2μ
(·, 1)L2(M)

(
J(μ)− J(0)

)
J(0)−11 + J(μ)H(μ),

whereμ �→ �(μ) ∈ B(L2
ε(M), L2−ε(M)) is holomorphic in the disc |μ| < ε. Theorem2

is proved. ��

2.2. Dirichlet-to-Neumann operator. As before we assume that R > 0 is so large that
there are no conical points on M with coordinate x /∈ (−R, R) and denote 
 = {p ∈
M : |x | = R}. Then for μ2 ∈ C\(0,∞) and any f ∈ C∞(
) there exists a unique
bounded at infinity solution to the Dirichlet problem

(�− μ2)u(μ) = 0 onM\
, u(μ) = f on 
, (2.9)

such that

u(μ) = f̃ −
(
�D

in − μ2
)−1 (

�− μ2
)
f̃ onMin, (2.10)

where f̃ ∈ C∞(Min\P) is an extension of f and �D
in is the Friedrichs selfadjoint

extension of the Dirichlet Laplacian on Min = {p ∈ M : |x | ≤ R}. We introduce the
Dirichlet-to-Neumann operator

N(μ2) f = lim
x→R+

〈−∂xu(μ;−x), ∂xu(μ; x)〉 + lim
x→R−

〈
∂xu(μ;−x),−∂xu(μ; x)〉;

(2.11)
here 〈·, ·〉 ∈ L2(
−)⊕ L2(
+) ≡ L2(
) with 
± = {p ∈M : x = ±R}.
Theorem 3. Let ε > 0 be sufficiently small. Then the functions

μ �→ N(μ2) ∈ B(H1(
); L2(
)), μ �→ N(μ2)−1 − i

2μ

(·, 1)L2(
)
∈ B(L2(
)),
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and μ �→ detN(μ2) ∈ C are holomorphic in the disc |μ| < ε, where detN(μ2) is the
zeta regularized determinant of N(μ2). Moreover, as μ tends to zero we have

detN(μ2) = −iμ(det∗N(0) + O(μ)), (2.12)

where N(0) has zero as an eigenvalue and det∗N(0) ∈ R
+∗ is the corresponding zeta

regularized determinant with zero eigenvalue excluded.

Proof. The main idea of the proof is essentially the same as in [2, Theorem B*] and [30,
Theorem B].

First we show that N(μ2) ∈ B(H1(
), L2(
)) is holomorphic in μ, |μ| < ε. Since
�D

in is a positive selfadjoint operator, its resolvent (�D
in − μ2)−1 : H−1/2(Min) →

H3/2(Min) is a holomorphic function of μ2 in the sufficiently small disc |μ2| < ε2;
here ‖v; Hs(Min)‖ = ‖(�D

in)
s/2v; L2(Min)‖. Let f̃ ∈ H3/2(Min) be a continuation of

f ∈ H1(
). Then in the small disc |μ| < ε the equality (2.10) defines a holomorphic
family of operators mapping H1(
) � f �→ u(μ) ∈ H3/2(Min). As a consequence,
for any f ∈ H1(
) the second limit in (2.11) is a holomorphic function of μ (more
precisely of μ2), |μ| < ε, with values in L2(
). The first limit in (2.11) also defines
a holomorphic with respect to μ operator in B(H1(
), L2(
)) as it is seen from the
explicit formulae

∂xu
(
μ;±(R+), y

) = ±
(
iμ
∫
Ok

f (y′) dy′ −
∑

�∈Z\{0}

√
4π2�2|Ok |−2 − μ2

×
∫
Ok

f (y′)e2π i�|Ok |−1(y−y′) dy′
)
,

×y ∈ Ok, 1 ≤ k ≤ n,

obtained by separation of variables in the cylindrical ends; here + signs (resp. −) are
taken if Ok corresponds to a right (resp. left) cylindrical end.

On the next step we make use of the representation

N(μ2)−1 = ((�0 − μ2)−1(· ⊗ δ
)
)

�
, (2.13)

where δ
 is the Dirac δ-function along 
, the action of the resolvent on (· ⊗ δ
) is
understood in the sense of distributions, and �
 is the restriction map to 
; for a proof
of (2.13) see [3, Proof of Theorem 2.1].

Let � be a smooth cutoff function onM supported in a small neighborhood of 
 and
such that � = 1 in a vicinity of 
. Since � is supported outside of conical points, the
local elliptic coercive estimate

‖�u; H1(M)‖ ≤ C(‖�̃�u; H−1(M)‖ + ‖�̃u; L2(M)‖ (2.14)

is valid, where �̃ ∈ C∞0 (M\P) and ��̃ = �. In particular, for

u = �(μ) f := (�0 − μ2)−1 f − i

2μ

(
f, 1
)
L2(M)

(2.14) implies

‖��(μ) f ; H1(M)‖ ≤ C
(‖ f ; L2

ε(M)‖ + |μ|2‖
(
�0 − μ2

)−1
f ; L2−ε(M)‖

+‖�(μ) f ; L2−ε(M)‖).
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This together with Theorem 2 shows that μ �→ ��(μ) ∈ B
(
L2

ε(M); H1(M)
)
is holo-

morphic in the disc |μ| < ε. Since the mapping L2(
) � ψ �→ ψ ⊗ δ
 ∈ H−1(M) =
(H1(M))∗ is continuous, for any f ∈ L2

ε(M) we have

(
(�0 − μ2)−1(· ⊗ δ
), f

)
L2(M)

=
(
· ⊗ δ
,

−i
2μ̄

(
f, 1
)
L2(M)

+ �(−μ̄) f
)
L2(M)

= i

2μ

(·, 1)L2(
)

(
1, f

)
L2(M)

+
(· ⊗ δ
, ��(−μ̄) f

)
L2(M)

,

where (·, ·)L2(M) is extended to the pairs in H−1(M)× H1(M) and L2−ε(M)× L2
ε(M).

In other words, the equality

(�0 − μ2)−1(· ⊗ δ
) = i

2μ

(·, 1)L2(
)
+ H(μ), |μ| < ε, (2.15)

holds in L2−ε(M), where μ �→ H(μ) ∈ B
(
L2(
), L2−ε(M)

)
is holomorphic. We substi-

tute u = H(μ)ψ into (2.14) and obtain

‖�H(μ)ψ; H1(M)‖ ≤ C
(‖ψ ⊗ δ
; H−1(M)‖

+ |μ|2‖(�0 − μ2)−1(ψ ⊗ δ
); L2−ε(M)‖
+ ‖H(μ)ψ; L2−ε(M)‖).

Thus μ �→ �H(μ) ∈ B(L2(
); H1(M)
)
is holomorphic. Now from (2.15), (2.13), and

continuity of the embedding H1(M) �
↪→ L2(
) we conclude that

N(μ2)−1 = i

2μ

(·, 1)L2(
)
+ H
(μ), |μ| < ε, (2.16)

where H
(μ)ψ = (�H(μ)ψ) �
 and μ �→ H
(μ) ∈ B(L2(
)) is holomorphic. In
particular, (2.16) implies that zero is a simple eigenvalue of N(0) and kerN(0) = {c ∈
C}; cf. (2.7).

The operator N(μ2) is an elliptic classical pseudodifferential operator on 
 (all
conical points of M are outside of 
 and thus do not affect properties of the symbol
of N(μ2)), e.g. from (2.13) one can see that the principal symbol of N(μ2) is 2|ξ |.
Besides, (2.13) implies that N(μ2) with μ2 ≤ 0 is formally selfadjoint, and N(μ2) is
positive if μ2 < 0 and nonnegative if μ = 0. Therefore the closed unbounded operator
N(μ2) in L2(
) with domain H1(
) is selfadjoint for μ2 ≤ 0, it is positive if μ2 < 0,
and nonnegative if μ = 0, e.g. [40].

Let μ ∈ i[0, ε) and let 0 ≤ λ1(μ) ≤ λ2(μ) ≤ λ3(μ) ≤ · · · be the eigenvalues of
the selfadjoint operatorN(μ2). The family of operatorN(μ2) depends holomorphically
on μ and is selfadjoint for μ ∈ i[0, ε), therefore its eigenvalues and eigenfunctions,
are holomorphic functions of μ in the disc |μ| < ε; e.g. [20, Chapter VII]). When ε is
sufficiently small, the eigenvalue λ1(μ) remains simple for |μ| < ε and λ1(μ) → 0 as
μ → 0, while all other eigenvalues satisfy δ < |λ2(μ)| ≤ |λ3(μ)| ≤ · · · with some
δ > 0. Let ψ(μ) be the eigenfunction corresponding to the eigenvalue λ1(μ) of N(μ2)

and satisfying (ψ(μ), ψ(−μ̄))L2(
) = 1; clearly, ψ(0) = 2−1/2. The equality

1/λ1(μ) = (N(μ2)−1ψ(μ),ψ(−μ̄)
)
L2(
)

, μ ∈ i(0, ε)
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extends by analyticity to the punctured disc |μ| < ε, μ �= 0. This together with (2.16)
and ‖ψ(μ)− 2−1/2; L2(
)‖ = O(|μ|) gives

λ1(μ) = −iμ + O(μ2), |μ| < ε. (2.17)

For μ �= 0 the operator N(μ2) is invertible, the function ζ(s) = TrN(μ2)−s is
holomorphic in {s ∈ C : �s > 1} and admits a meromorphic continuation to C with no
pole at s = 0. We set detN(μ2) = e−∂sζ(0). Besides, the function ζ ∗(s) = TrN∗(μ2)−s
of the invertible operator

N∗(μ2) = N(μ2) + (1− λ1(μ))(·, ψ(−μ̄))L2(
)ψ(μ), |μ| < ε,

is holomorphic in {s ∈ C : �s > 1} and has a meromorphic continuation to C with no
pole at s = 0; here the Riesz projection (·, ψ(−μ̄))L2(
)ψ(μ) is a smoothing operator.

We set det∗N(μ2) = detN∗(μ2) = e−∂sζ
∗(0). Clearly,

detN(μ2) = λ1(μ) det∗N(μ2). (2.18)

Note that (2.13) also implies that the order of pseudodifferential operator ∂�
μN(μ2)−1

is −1 − 2�. Thus the order of ∂�
μN(μ2) is 1 − 2�, for � ≥ 1 and |μ| < ε the operator

∂�−1
μ

[(
∂μN∗(μ2)

)
N∗(μ2)−1

]
is trace class and

∂�
μ log det∗N(μ2) = Tr

(
∂�−1
μ

[(
∂μN∗(μ2)

)
N∗(μ2)−1

])
,

∂μ̄ log det∗N(μ2) = Tr
((

∂μ̄N∗(μ2)
)
N∗(μ2)−1

) = 0;
see [2,11]. As a consequence,μ �→ det∗N(μ2) is holomorphic in the disc |μ| < ε. This
together with (2.18) and (2.17) completes the proof. ��

2.3. Relative zeta function. Both perturbed and unperturbed Mandelstam diagrams can
be considered as strips � and �̊ with different slits. Therefore L2(�) = L2(�̊) and the
spaces L2(M) and L2(M̊) can be naturally identified. Starting from now on we consider
only selfadjoint Friedrichs extensions � and �̊ in L2(M); in other words, we set ε = 0
and omit it from notations.

Lemma 3. For all t > 0 the operator e−t� − e−t�̊ is trace class and

Tr(e−t� − e−t�̊) = O(t−1/2) as t → +∞. (2.19)

Proof. As is known [3, Theorem 2.2], (� + 1)−1 − (�D
in ⊕�D

out + 1)−1 is trace class;
here �D

in is the same as in the Sect. 2.2 and �D
out is the selfadjoint Friedrichs extension

of the Dirichlet Laplacian onMout = {p ∈M; |x | ≥ R}, i.e. �D
in⊕�D

out is the operator
of the Dirichlet problem (2.9). Then by the Krein theorem, see e.g. [42, Chapter 8.9]
or [3, Theorem 3.3], there exists a spectral shift function ξ ∈ L1(R+, (1+λ)−2 dλ) such
that

Tr
(
(� + 1)−1 − (�D

in ⊕�D
out + 1)−1

) = −
∫ ∞

0
ξ(λ)(1 + λ)−2 dλ.

Moreover, the following representation is valid



576 L. Hillairet, V. Kalvin, A. Kokotov

Tr
(
e−t� − e−t�D

in⊕�D
out
) = −t

∫ ∞

0
e−tλξ(λ) dλ, (2.20)

where the right hand side is finite. Thus e−t�−e−t�D
in⊕�D

out is trace class. Besides, by [3,
Theorem 3.5] we have

ξ(λ) = π−1 Arg detN(λ + i0), λ > 0, (2.21)

where Arg z ∈ (−π, π ] and ξ vanishes for negative λ. Using (2.12) we can then compute
ξ(λ) = − 1

2 + O(
√

λ) as λ → 0+.
As a consequence, the right hand side of (2.20) provides the left hand side with

asymptotic

Tr
(
e−t� − e−t�D

in⊕�D
out
) = 1

2
+ O(t−1/2) as t → +∞. (2.22)

Similarly we conclude that e−t�̊ − e−t�̊D
in⊕�̊D

out is trace class and

Tr
(
e−t�̊ − e−t�̊D

in⊕�̊D
out
) = 1

2
+ O(t−1/2) as t → +∞; (2.23)

here the operators �̊D
in and �̊D

out of the Dirichlet problems on {p ∈ M̊ : |x | ≤ R} and
{p ∈ M̊ : |x | ≥ R} respectively are introduced in the same way as �D

in and �D
out . For

the operator �D
in (resp. �̊

D
in) on compact manifold it is known that e−t�D

in (resp. e−t�̊D
in )

is trace class and Tr e−t�D
in = O(e−λt ) (resp. Tr e−t�̊D

in = O(e−λt )) as t → +∞, where
λ > 0 is the first eigenvalue of �D

in (resp. �̊D
in). Since �D

out ≡ �̊D
out , this together

with (2.22) and (2.23) completes the proof. ��
Remark 1. In the general framework [35] (see also [36,37]) the long time behavior of
Tr
(
e−t� − e−t�D

in⊕�D
out
)
is supposed to be studied via properties of the corresponding

scattering matrix near the bottom of the continuous spectrum (as it naturally follows
from (2.20) and the Birman–Krein theorem). In contrast to this, in the proof of Lemma 3
we follow the original idea of Carron [3, Theorem 3.5], [4] and immediately obtain the
result relying on (2.21) and (2.12).

Lemma 4. Let K be the number of the interior slits of the diagram M. Then for some
δ > 0

Tr
(
e−t� − e−t�̊

)
= −K/4 + O

(
e−δ/t) (2.24)

as t → 0+.

Proof. Let {U j } be a finite covering of the flat surface M by open discs centered at
conical points, flat open discs, and open semi-infinite cylinders and let {ζ j } be the C∞
partition of unity subject to this covering. Let also ζ̃ j be smooth functions supported in
small neighborhoods of U j such that ζ j ζ̃ j = ζ j and

dist(supp∇ ζ̃ j , suppζ j ) > 0

for all j . Define a parametrix for the heat equation on M as

P(p, q; t) =
∑
j

ζ̃ j (p)K j (p, q; t)ζ j (q), (2.25)
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where K j is (depending on the type of the element U j of the covering) either the heat
kernel on the infinite flat cone with conical angle 4π (see, e. g., [23], f-la (4.4)) or the
standard heat kernel in R

2 or the heat kernel

H(x, y, x ′, y′, t) = e−(x−x ′)2/(4t)
√
4π ta

∑
n∈Z

ei2πa
−1n(y−y′)−4π2n2a−2t (2.26)

in the infinite cylinder with circumference a (the latter is the same as the circumference
of the corresponding semi-infinite cylinder from the covering). One has the relation

lim
t↓0

∫
M

P(x, y, x ′, y′; t) f (x ′, y′) dx ′ dy′ = f (x, y), ∀ f ∈ C∞0 (M)

and the estimate
|P1(x, y, x

′, y′; t)| ≤ Ce−δ(1+x2+x ′2)/t (2.27)

for P1(p, q; t) := (∂t −�)P(p, q; t) and some δ > 0. To prove (2.27) one has to notice
that P1(p, q; t) vanishes when p does not belong to the union of supp∇ζ j (which is a
compact subset of M) or when the distance between p and q is sufficiently small and
then make use of the explicit expressions for the standard heat kernels in (2.25). Due to
(2.27) one can construct the heat kernel on M in the same way as it is usually done for
compact manifolds (see, e. g. [34]). We introduce consecutively

P�+1(x, y, x
′, y′; t) =

∫ t

0

∫
M

P1(x, y, x̂, ŷ; t − t̂)P�(x̂, ŷ, x
′, y′; t̂) dx̂ d ŷ dt̂, � ≥ 1.

(2.28)
By (2.27) the second integral in (2.28) is absolutely convergent and

|P�+1(x, y, x
′, y′; t)| ≤ e−δ(1+x2+x ′2)/t (ct)� (2.29)

for some c > 0. For small t the heat kernel H on M is given by

H = P +
∞∑

�=1
(−1)�P�. (2.30)

Moreover, one has the following estimate for the difference between the heat kernel
and the parametrix P

|H(x, y, x ′, y′; t)− P(x, y, x ′, y′; t)| ≤ Ce−δ(1+x2+x ′2)/t , (2.31)

where t > 0 is sufficiently small, δ and C are some positive constants.
Similarly one can construct a parametrix Q and the heat kernel H̊ for the “free”

diagram M̊ (coinciding with M for |x | > R, with sufficiently large R). Obviously,
P(p, p; t) = Q(p, p; t) for p = (x, y), |x | > R. Thus,

Tr(e−t� − e−t�̊) =
∫
M

H(x, y, x, y; t)dx dy −
∫
M̊

H̊(x, y, x, y; t) dx dy

=
∫
M∩{|x |<R}

H(x, y, x, y; t)dx dy

−
∫
M̊∩{|x |<R}

H̊(x, y, x, y; t) dx dy + O(e−δ/t ),
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where δ > 0 and t ↓ 0. From [23, Theorem 8] it follows that the first integral at the right
has the asymptotics

Area(M ∩ {|x | < R}
4π t

+
1

12

∑
k

(
2π

βk
− βk

2π

)
+ O

(
e−δ/t) ,

as t → 0+, where the summation is over the conical points ofM inside {|x | < R} and all
the conical angles βk are equal to 4π . The second term has the similar asymptotics with
Area(M̊ ∩ {|x | < R} = Area(M ∩ {|x | < R} and smaller number of conical points (by
2K , where K is the number of interior slits of the perturbed diagram M). This implies
(2.24). ��

Nowwe are in position to introduce the relative zeta determinant det(�−μ2, �̊−μ2)

following [35]. As a consequence of Lemma 3 the function

ζ∞
(
s;�− μ2, �̊− μ2

)
= 1


(s)

∫ ∞

1
t s−1etμ2

Tr
(
e−t� − e−t�̊

)
dt, μ2 ≤ 0,

is holomorphic in {s ∈ C : �s < 1/2} (and ζ∞(0;�, �̊) = 0). Lemma 4 implies that
the holomorphic in {s ∈ C : �s > 1} function

ζ0

(
s;�− μ2, �̊− μ2

)
= 1


(s)

∫ 1

0
t s−1etμ2

Tr
(
e−t� − e−t�̊

)
dt, μ2 ≤ 0,

has ameromorphic extension to s ∈ Cwith no pole at s = 0 (and ζ0(0;�, �̊) = −K/4).
We introduce the relative zeta function

ζ
(
s;�− μ2, �̊− μ2

)
= ζ0

(
s;�− μ2, �̊− μ2

)
+ ζ∞

(
s;�− μ2, �̊− μ2

)

and the corresponding relative determinant

det(�− μ2, �̊− μ2) = e−∂sζ(0;�−μ2,�̊−μ2), μ2 ≤ 0.

Theorem 4.

det(�− μ2, �̊− μ2) = det(�, �̊) + o(1) as μ2 → 0−. (2.32)

Proof. From analytic continuations of ζ0 and ζ∞ it is easily seen that as μ2 → 0− we
have

∂sζ0

(
0;�− μ2, �̊− μ2

)
= ∂sζ0

(
0;�, �̊

)
+ o(1),

∂sζ∞
(
0;�− μ2, �̊− μ2

)
= ∂sζ∞

(
0;�, �̊

)
+ o(1),

which proves the assertion. ��
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2.4. Decomposition formula.

Proof of Theorem 1. The asymptotic Tr(e−t� − e−t�D
in⊕�D

out ) ∼∑ j≥−2 a j t j/2 as t →
0+ (which can be established in the same way as (2.24)) together with (2.22) implies
that the relative zeta function

ζ
(
s;�− μ2,�D

in ⊕�D
out − μ2) = 1


(s)

∫ ∞

0
t s−1etμ2

Tr(e−t� − e−t�D
in⊕�D

out ) dt,

μ2 < 0,

is holomorphic for {s ∈ C; �s > 1} and has a meromorphic extension to s ∈ C with no
pole at s = 0. We set

det
(
�− μ2,�D

in ⊕�D
out − μ2) = e−∂sζ

(
0;�−μ2,�D

in⊕�D
out−μ2

)
.

Similarly we define det
(
�̊−μ2, �̊D

in ⊕�D
out −μ2

)
. Then by [3, Theorem 4.2] we have

det
(
�− μ2,�D

in ⊕�D
out − μ2) = detN(μ2); det

(
�̊− μ2, �̊D

in ⊕�D
out − μ2)

= det N̊(μ2).

Dividing the first equality by the second one we get

det(�− μ2, �̊− μ2) det(�̊D
in − μ2)

det(�D
in − μ2)

= detN(μ2)

det N̊(μ2)
, (2.33)

where det(�D
in−μ2) and det(�̊D

in−μ2) are the zeta regularized determinants ofDirichlet
Laplacians on compact manifolds. Since �D

in is positive, we have det(�D
in − μ2) →

det�D
in as μ2 → 0, and the same is true for �̊D

in . Thanks to (2.32) and Theorem 3

applied to N(μ2) and N̊(μ2) we can pass in (2.33) to the limit as μ2 → 0− and obtain

det(�, �̊) det �̊D
in

det�D
in

= det∗N(0)

det∗ N̊(0)
.

Since det �̊D
in and det∗ N̊(0) are moduli independent, this proves Theorem 1, where

C = (det �̊D
in det

∗ N̊(0))−1 and N = N(0). ��

3. Variational Formulas for the Relative Determinant

3.1. Compactification of the ends. In the holomorphic local parameter ζk = exp(∓2π z/
|Ok |), z = x + iy in a vicinity Uk = {x > R} (or {x < −R}) of the point at infinity
ζk = 0 of the k-th cylindrical end of M the flat metricm on M is written in the form

m = |Ok |2
4π2

|dζk |2
|ζk |2 .
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Let χk be a smooth function on C such that χk(ζ ) = χk(|ζ |), |χk(ζ )| ≤ 1, χk(ζ ) = 0 if
|ζ | > exp(−2π(R + 1)/|Ok |) and χ(ζ ) = 1 if |ζ | < exp(−2π(R + 2)/|Ok |). Introduce
another metric m̃ on M by

m̃ =
{
m for |x | < R;
[1 + (|ζk |2 − 1)χ(ζk)]m in Uk .

Observe that the Dirichlet-to-Neumann operators along γ coincide for m and m̃ by
conformal invariance. Applying BFK decomposition formula [2, Theorem B*] to the
determinant of the Laplacian �m̃ on the compact Riemannian manifold (M, m̃), we get

log det�m̃ = logC0 + log det�D
in + log det∗N + log det�m̃

ext , (3.1)

where �m̃
ext is the operator of the Dirichlet problem for �m̃ inM\{|x | < R},

C0 = Area(M, m̃)∑ |Ok | ,

and N is the same as in (2.1).
From (2.1) and (3.1) it follows that log det�m̃ and log det(�, �̊) have the same

variations with respect to moduli hk , θk , τk and, therefore,

det�m̃ = C det(�, �̊)

with moduli independent factor C .

3.2. Variational formulas for resolvent kernel. Denote by G(·, ·; λ) the resolvent kernel
of the Laplace operator �m̃. From now on we assume that the spectral parameter λ is
real, so G(·, ·; λ) is a real-valued function.

Introduce the one-form ω onM

ω = G(P, z, z̄; λ)Gzz̄(Q, z, z̄; λ)dz̄ + Gz(P, z, z̄; λ)Gz(Q, z, z̄; λ)dz. (3.2)

Clearly, dω = 0 on M ∩ {|x | < R}.
The following proposition describes the variations of the resolvent kernelG(P, Q; λ)

under variations of moduli parameters. It is assumed that positions of the points P and
Q on the diagram are kept fixed when the moduli vary.

Proposition 2.

∂G(P, Q; λ)

∂θk
= 4�{

∮
γk

ω
}
, k = 1, . . . , 3g + n − 3 ; (3.3)

∂G(P, Q; λ)

∂hk
= −4�{

∮
bk

ω
}
, k = 1, . . . , g ; (3.4)

∂G(P, Q; λ)

∂τk
= 4�{

∮
±Ak±A′k∓Ck

ω
}
. (3.5)

Here γk are the contours along which the twists θk are performed, bk are b-cycles on
the Riemann surface M encircling the finite cuts of the diagram, contours Ak, A′k and
Ck coincide with circumferences of the three cylinders joining at the moment of “time”
x = τk , the choice of sign± depends on the position of the cylinders (two at the left and
one at the right or vice versa), see Fig. 3.
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x

Ck •

τk

Ak

Ak

x

Ck•

τk

Ak

Ak

bk
• •

hk

θ

θ +1

θk γk
• •

••

Fig. 3. Contours

Remark 2. In the sequel we will differentiate several spectral quantities with respect to
the moduli parameters. One possible way to justify these differentiations is by using an
analytic family of diffeomorphisms φt so that the Laplace operator onMt is the Laplace
operator of the metric φ∗t m̃t on M0. Everything can then be differentiated with respect
to the parameter.

In the proof of Proposition 2 we will make use of the representation of a solution to
the homogeneous Helmholtz equation given by the following Lemma.

Lemma 5. Let G(z, z̄, ξ, ξ̄ ; λ) be the resolvent kernel of the operator �m̃, and let u be
a solution to

�m̃u − λu = 0 (3.6)

in M. Let also � ⊂ M be a an open subset of M with piece-wise smooth boundary.
Then for any P ∈ �, P = (ξ, ξ̄ ) one has the relation

u(ξ, ξ̄ ) = −2i
∫

∂�

G(z, z̄, ξ, ξ̄ ; λ)uz̄(z, z̄)dz̄ + Gz(z, z̄, ξ, ξ̄ ; λ)u(z, z̄)dz. (3.7)

Proof of Lemma 5. Applying Stokes theorem to the integral over the boundary of the
domain �ε = �\{|z − ξ | ≤ ε}, one gets the relation∫

∂�ε

G(z, z̄, ξ, ξ̄ ; λ)uz̄(z, z̄)dz̄ + Gz(z, z̄, ξ, ξ̄ ; λ)u(z, z̄)dz

=
∫∫

�ε

(Guzz̄ − Gzz̄u) dz ∧ dz̄

=
∫∫

�ε

1

ρ(z, z̄)

{
G(�m̃u − λu)− (�m̃G − λG)u

}
dz ∧ dz̄ = 0 ,

where �m̃ = ρ(z, z̄)∂z∂z̄ in the conformal local parameter z. Sending ε to 0 and using
the asymptotics

G(z, z̄, ξ, ξ̄ ; λ) = 1

2π
log |z − ξ | + O(1)
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as z → ξ , one gets (3.7). ��
Proof of Proposition 2. Let us prove (3.3).

Let� be the surfaceM cut along the twist contour γk . Denote the differentiation with
respect to θk by dot. The function Ġ(P, ·; λ) satisfies homogeneous Helmholtz equation
(3.6). (Note that the singularity of G(P, ·; λ) at P disappears after differentiation with
respect to θk .) Differentiating the relation

G−(P, z, z̄; λ; {. . . , θk, . . . }) = G+(P, z + iθk, z + iθk, λ; {. . . , θk, . . . })
for the left and right limit values ofG(P, ·; λ) at the contour γk (we remind the reader that
G implicitly depends on moduli, this dependence is indicated in the previous formula),
we get

Ġ−(P, z, z̄; λ) = Ġ+(P, z, z̄; λ) + i(Gz(P, z, z̄; λ)− Gz̄(P, z, z̄, λ)), (3.8)

(Ġ z̄)−(P, z, z̄; λ) = (Ġ z̄)+(P, z, z̄; λ) + i(Gzz̄(P, z, z̄; λ)− Gz̄z̄(P, z, z̄, λ)).

(3.9)

Assuming that the contour γk is not homologous to zero and using (3.7), (3.8) and
(3.9), we get

Ġ(P, Q; λ) = 2
∫

γk

G(z, z̄, Q; λ)
[
Gzz̄(P, z, z̄; λ)− Gz̄z̄(P, z, z̄, λ)

]
dz̄

+Gz(z, z̄, Q; λ)
[
Gz(P, z, z̄; λ)− Gz̄(P, z, z̄, λ)

]
dz

= 2
∫

γk

ω(P, Q) + ω(P, Q)− d (G(Q, z, z̄; λ)Gz̄(P, z, z̄; λ))

= 4�
{∫

γk

ω

}
.

In the case of homologically trivial contour γk dividing the diagramM into two parts,
M− and M+, one has, say, for Q ∈M−:

Ġ(P, Q; λ) = −2i
∮

γk

G(z, z̄, Q; λ)[Ġ−]z̄(P, z, z̄; λ)dz̄

+Gz(z, z̄; Q; λ)Ġ−(P, z, z̄; λ)dz,

−2i
∮

γk

G(z, z̄, Q; λ)[Ġ+]z̄(P, z, z̄; λ)dz̄

+Gz(z, z̄; Q; λ)Ġ+(P, z, z̄; λ)dz = 0.

These two relations together with (3.8), (3.9) imply (3.3).
To prove (3.5)we notice (leaving the detailed proof to the reader) that the infinitesimal

horizontal shift of a zero Pk of the differential ω (or, equivalently, the variation of the
interaction time τk) is the same as the insertion (removal) of the infinitesimal horizontal
cylinders along the circumferences Ak , A′k and Ck of the three cylinders of the diagram
M meeting at Pk . It is easy to show that the variation of the resolvent kernel under each
such insertion (removal) is given by

4�{
∮

γ

ω
}
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where the γ is the cycle of the insertion (removal). The orientation of the cycle γ depends
on its position with respect to the point Pk (from the left or from the right).

It should also be noticed that the sum±Ak±A′k∓Ck is homologous to a small circular
contour surrounding the zero Pk and (3.5) could also be proved using real analyticity
of the resolvent kernel with respect to the local parameter

√
z − z(Pk) (cf. the proof of

formula (4.24) in [23]).
The proof of (3.4) is similar to the proof of the formula (4.20) in [23]. We leave it to

the reader. ��

3.3. Variational formulas for regularized determinant. Choose a canonical basis of a
and b-periods on the compactRiemann surfaceM, the corresponding basis of normalized
holomorphic differentials {vk};

∮
a j

vk = δ jk and introduce the corresponding matrix of
b-periods

B =
(∮

b j

vk

)

j,k=1,...,g
,

the prime form E(P, Q), the canonical meromorphic bidifferential

W (P, Q) = dp dQ log E(P, Q),

and the Bergman projective connection SB (see [10]). Denote by Sω the projective
connection defined via

{∫ P

ω, x(P)

}
,

where the braces denote the Schwarzian derivative.
The following theorem gives the variational formulas for the regularized determinant

with respect to moduli.

Theorem 5. Let

Q̃ = det�m̃

det �B
, Q = det(�, �̊)

det �B
.

Then the following variational formulas hold:

∂ log Q

∂θk
= ∂ log Q̃

∂θk
= − 1

6π
�{
∮

γk

SB − Sω

ω

}
, k = 1, . . . , 3g + n − 3; (3.10)

∂ log Q

∂hk
= ∂ log Q̃

∂hk
= 1

6π
�
{∮

bk

SB − Sω

ω

}
, k = 1, . . . , g; (3.11)

∂ log Q

∂τk
= ∂ log Q̃

∂τk
= − 1

6π
�
{∮

±Ak±A′k∓Ck

SB − Sω

ω

}
. (3.12)

We will derive Theorem 5 from Proposition 2 relying on the contour integral represen-
tation of the operator-zeta function and the variations of individual eigenvalues of the
Laplacian �m̃ , see Lemma 6 below.
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Lemma 6. Let λ j be an eigenvalue of�m̃ and let φ j be the corresponding (real-valued)
normalized eigenfunction. The one-form

� j = (∂zφ j (z, z̄))
2dz +

λ j

4
φ j (z, z̄)

2dz̄ (3.13)

is closed in the flat part of (M, m̃) outside the conical singularities. One has the following
variational formulas:

∂λ j

∂θk
= 4�

{∮
γk

� j

}
, (3.14)

∂λ j

∂hk
= −4�

{∮
bk

� j

}
, (3.15)

∂λ j

∂τk
= 4�

{∮
±Ak±A′k∓Ck

� j

}
. (3.16)

Proof of Lemma 6. All statements immediately follow from Proposition 2 (cf. [10, p.
53, f-la 3.17]) and the relation

λ̇n =
∫∫

M
Res

(
(λ− λn)Ġ(x, y; λ); λ = λn

) ∣∣∣
y=x

dm̃(x).

However, Lemma 6 can also be proved independently. Let us omit the index j and denote
the eigenvalue by λ and the corresponding (real-valued) normalized eigenfunction by φ.
For instance, to prove (3.14) observe (cf. (3.8) and (3.9)) that the derivative φ̇ of φ with
respect to θk has the jump i(φz − φz̄) on the contour γk , whereas φ̇z has there the jump
i(φzz − φzz̄). Denote by M̂ the surfaceM cut along the contour γk . We have

∫∫
M̂

φφ̇ = 1

λ

∫∫
M̂

�m̃φφ̇ = 1

λ

{
2i
∫

∂M̂
φz̄φ̇dz̄ + φφ̇zdz +

∫∫
M̂

φ�m̃ φ̇

}

= 1

λ

{
−2
∫

γk

φz̄(φz − φz̄)dz̄ + φ(φzz − φzz̄)dz + λ̇ + λ

∫∫
M̂

φφ̇

}

Now (3.14) follows from the relations

φz̄φzd z̄ − (φz̄)
2dz̄ + φφzzdz − φφzz̄dz = d(φφz)− (φz)

2dz − φφzz̄d z̄

−(φz̄)
2dz̄ − φφzz̄dz

and

φzz̄ = λ

4
φ;

the latter one, of course, holds only in the flat part of (M, m̃). ��
Remark 3. As in Remark 2, the preceding lemma has to be understood in the following
way. For any real-analytic moduli variation, the spectrum can be organized into real-
analytic branches that satisfy the preceding relations. When there are multiple eigen-
values, it is, in general not possible to obtain branches λ j that depend smoothly on the
joint moduli parameters. However, for any λ (possibly a multiple eigenvalue) then there
exists ε > 0 such that Sλ := ∑

|λ j−λ|<ε λ j (or any symmetric expression in the λ j )
depends smoothly on the moduli parameters.
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Proof of Theorem 5. From now on λ stands for the spectral parameter (we assume that it
is real and negative), {λk} is the spectrum of�m̃ , z is the complex variable of integration
which at some points also becomes the spectral parameter (one of the arguments of the
resolvent kernel), x and y will denote the (flat) complex local coordinates of points near
the contour γk . We start from the following integral representation of the zeta-function
of the operator �m̃ − λ through the trace of the second power of the resolvent:

sζ(s + 1;�m̃ − λ) = 1

2π i

∫

λ

(z − λ)−sTr
(
(�m̃ − z)−2

)
dz , (3.17)

where 
λ is the contour connecting −∞ + iε with −∞ − iε and following the cut
(−∞, λ) at the (sufficiently small) distance ε > 0.

Observe that Tr
(
(�m̃ − z)−2

)
< ∞ using Weyl’s law. For any variation we can also

find some constant C such that, for any j
∣∣λ̇ j
∣∣ ≤ Cλ j .

This is most easily seen using Remark 2.Whenwe normalize using the diffeomorphisms
φt we obtain a family of quadratic forms qt (u) such that |q̇t (u)| ≤ Cqt (u). Since
λ̇ j = q̇t (u j ) we obtain the bound.

This bound and Weyl’s law imply that

∑ λ̇ j

(λ j − z)3

converges locally uniformly in z.
We may thus differentiate (3.17). Differentiating with respect to θk (dot stands for

such a derivative) and making use of (3.14), we get

sζ̇ (s + 1, �m̃ − λ) = − 1

π i

∫

λ

(z − λ)−s
∑
λn>0

λ̇n

(λn − z)3
dz

= − 4

π i

∫

λ

(z − λ)−s
∑
n

�
{∮

γk
(∂xφn(x, x̄))2dx + λn

4 φn(x, x̄)2dx̄
}

(λn − z)3
.

(3.18)

One can assume that the contour γk is parallel to the imaginary axis and, therefore,
� ∮

γk
φ2
nd x̄ = 0 (the latter trick does not work when one differentiates with respect to

other moduli hk , τk , in these cases the proof gets a little bit longer) and the right hand
side of (3.18) can be rewritten as

− 2

π i

∮
γk

∫

λ

(z − λ)−s
∑
n

(∂xφn(x, x̄))2

(λn − z)3
dxdz − 2

π i

∮
γk

∫

λ

∑
n

(∂x̄φn(x, x̄))2

(λn − z)3
dx̄dz.

(3.19)
Using the standard resolvent kernel representation

G(x, y; z) =
∑
n

φn(x, x̄)φn(y, ȳ)

λn − z
,
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where summation is understood in the sense of the theory of distributions. The sum under

the first (resp. the second) integral is identified with 1
2

(
d2

(dz)2
G ′′xy(x, y; z)

) ∣∣∣
y=x

(resp.

1
2

(
d2

(dz)2
G ′′̄x ȳ(x, y; z)

) ∣∣∣
y=x

. It should be noted that although the resolvent kernel (as

well as its second xy-derivative) is singular at the diagonal x = y, after differentiation
with respect the spectral parameter this singularity disappears. Using Theorem 2.7 from
Fay’s memoir [10], we get

(
d2

(dz)2
G ′′xy(x, y; z)

) ∣∣∣
y=x

= d2

(dz)2

[(
G ′′xy(x, y; z)−

1

4π

1

(x − y)2
+

z

16π

ȳ − x̄

y − x

) ∣∣∣
y=x

]
=: d2

(dz)2
�(x, z);

note that in [10, (2.32)] one should take r = |x − y|, H0 = 1, and H1 = 0 as the metric
m̃ is flat in a vicinity of the contour γk . Clearly, in the right hand side of (3.18) the sum
under the second integral equals to

d2

(dz)2
�(x, z̄).

Integration by parts in (3.18) (and the change of variable s + 1 �→ s) leads to

ζ̇ (s;�m̃ − λ) = − 1

π i

∮
γk

∫

λ

(z − λ)−s
[
d

dz
�(x, z)dx +

d

dz
�(x, z̄)dx̄

]
dz.

Shrinking the contour 
λ to the half-line (−∞, λ), we obtain

ζ̇ (s,�m̃ − λ) = −2 sin(πs)

π

∫ λ

−∞

∮
γk

(λ− t)−s
[
d

dt
�(x, t)dx +

d

dt
�(x, t)dx̄

]
dt.

(3.20)
We differentiate (3.20) with respect to s and set s = 0 then we let λ go to 0. As a result
we get

ζ̇ ′(0,�m̃) = −2
∮

γk

�(x, t)
∣∣∣t=0
t=−∞dx + �(x, t)

∣∣∣0
t=−∞dx̄ (3.21)

= −2
∮

γk

⎛
⎝ 1

24π
SB(x)− 1

4

g∑
α,β=1

(�B)−1αβ vα(x)vβ(x)

⎞
⎠ dx

+
(
· · ·
)
dx̄ (3.22)

= − 1

6π
�
⎧⎨
⎩
∮

γk

SB(x)dx − 6π
∮

γk

g∑
α,β=1

(�B)−1αβ vα(x)vβ(x)dx

⎫⎬
⎭ ,

which is the same as (3.10). To pass from (3.21) to (3.22) we used the classical Lemma 7
given below (cf. [10, p. 30]). ��
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Lemma 7. Let, as before, G(x, y; λ) be the resolvent kernel for the operator�m̃ . Define
the Green function G(x, y) of the operator �m̃ via the expansion

G(x, y; λ) = − 1

Area(M, m̃)

1

λ
+ G(x, y) + O(λ), λ → 0. (3.23)

Then G ′′xy( · , · ) is a meromorphic bidifferential with unique double pole at the diagonal
x = y, related to the Bergman bidifferential W (x, y) via

4πG ′′xy(x, y) = W (x, y)− π

g∑
1

�B
−1
i j vi (x)v j (y),

where v1, . . . , vg are the normalized holomorphic differentials on the compact Riemann
surface M. In particular, we have

[
4πG ′′xy(x, y)−

1

(x − y)2

] ∣∣∣
y=x

= 1

6
SB(x)− π

g∑
1

�B
−1
i j vi (x)v j (x),

where SB is the Bergman projective connection.

Proof. Clearly, the Green function (symmetric with respect to its both arguments) is the
(unique) solution to the problem

{
�m̃

x G(x, y) = − 1
Area(M,m̃)

for x �= y,

G(x, y) ∼ 1
2π log |x − y| as x → y.

Thus, ∂x̄ G ′′xy = 0 for x �= y and 4πG ′′xy(x, y) = 1
(x−y)2

+ O(1) as y → x . This implies
the equation

4πG ′′xy(x, y) = W (x, y) +
g∑

i, j=1
ci j vi (x)v j (y) (3.24)

with some constants ci j . Using Stokes theorem, it is easy to show that

v.p.
∫∫

M
G ′′xy(x, y)vi (x) = 0, i = 1, . . . , g. (3.25)

Plugging (3.24) in the orthogonality conditions (3.25) and using Stokes theorem once
again, one gets the relations

ci j = −π(�B)−1i j , i, j = 1, . . . , g.

��
Remark 4. For othermoduli (hk and τk) the trickwith choosing the contour of integration
parallel to the imaginary axis is impossible and one has to work with the additional term

∑ λn

4

(φn(x, x̄))2

(z − λn)3
= 1

2

(
d2

(dz)2
G ′′x x̄ (x, y; z)

) ∣∣∣
y=x

.
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To interchange the differentiation with respect to z and pass to the limit y → x one
should make use of the following corollary of [10, Theorem 2.7]:

(
d2

(dz)2
G ′′x x̄ (x, y; z)

) ∣∣∣
y=x

= d2

(dz)2

{(
G ′′x x̄ (x, y; z)−

1

16π
z log |x − y|2

) ∣∣∣
y=x

}
.

We then perform the same operations as beforewhere� now impliesG ′′x x̄ or equivalently
�G. This term gives rise to the expressions

�
[

1

Area(M, m̃)

∮
bk
d x̄

]
or

1

Area(M, m̃)

∮
±Ak±A′k∓Ck

d x̄ .

Both of them vanish.

Remark 5. For non Friedrichs self-adjoint extensions of the Laplacian on (M, m̃) λ = 0
is not an eigenvalue and (3.23) is no longer true. Determinants of such extensions were
studied in [17].

4. Bergman Tau-Function on Mandelstam Diagrams and Explicit Formulas for
Regularized Determinant

In this section we show that a solution to the system of equations in partial derivatives
(3.10, 3.11, 3.12) can be found explicitly in terms of certain canonical objects related
to the underlying Riemann surfaceM (theta-functions, prime-forms) and the divisor of
the meromorphic differential ω. This leads to an explicit formula for the regularized
determinant det(�, �̊) (up to moduli independent multiplicative constant).

We construct the above mentioned solution as the modulus square of the function τ

defined on the space of Mandelstam diagrams of a given genus. (More precisely, only
some integer power of τ is single-valued on the space of diagrams, the function τ itself
is defined up to a unitary factor.)

We start with definition of the function τ . Note that it is a straightforward general-
ization of the Bergman tau-function on the moduli space of Abelian differentials [23]
(i. e. the moduli space of pairs (X, ω), where X is a compact Riemann surface, and ω

is a holomorphic one-form on X ) to the case of a meromorphic one-form ω with pure
imaginary periods and simple poles with (fixed) real residues. This generalization (along
with many others) was also recently discussed in [19].

The cases of genus g = 0, g = 1 and g ≥ 2 should be considered separately, the first
two are pretty elementary and do not involve somewhat complicated auxiliary objects.

Genus zero case. Let the Riemann surfaceM have genus zero. In this case the Man-
delstam diagram � has no interior slits. The Riemann surface M is biholomorphically
equivalent to the Riemann sphere CP1, let z be the uniformizing parameter which came
from C = CP1\∞. The canonical meromorphic bidifferential is given by

W (P, Q) = dz(P) dz(Q)

(z(P)− z(Q))2
.

Assume that the circles O1, . . . , On− correspond to the left cylindrical ends of M, i.e.
∪1≤�≤n−O� is the cross-section {p ∈ M : x = −R}. Then there are n+ = n − n−
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circles On−+1, . . . , On corresponding to the right cylindrical ends of M. Let P−k with
k = 1, . . . , n− and P+

j with j = 1, . . . , n+ be the corresponding points at infinity of the
diagram M or, equivalently, the poles of the meromorphic differential ω with residues

−|Ok |
2π and

|Oj+n−|
2π respectively. Let also R1, . . . , Rn−2 be the zeros of the meromorphic

differential ω or, equivalently, the end points of the semi-infinite slits of the diagramM.
Introduce the local parameters

ζ−k = exp(2π z/|Ok |) (resp. ζ +
j = exp(−2π z/|On−+ j |)) (4.1)

in vicinities of the poles P−k (resp. P+
j ) of the differential ω and

ζ� =
√
z − z(Rl) (4.2)

in vicinities of the zeros Rl of ω. We call the parameters (4.1), (4.2) distinguished. In
what followswe denote byW (Rl , · ) themeromorphic one-form on the Riemann surface
M

W (P, · )
dζ(P)

∣∣∣
P=Rl

,

where ζ is the distinguished local parameter in a vicinity of Rl ; the quantitiesW (P±k , · )
have similar meaning. Introduce the function τ on the space of Mandelstam diagrams
via

τ 12 = 1

ω2( · )

∏n−
k=1 W (P−k , · )∏n+

j=1 W (P+
j , · )∏n−2

l=1 W (Rl , · )
. (4.3)

Clearly, the right hand side of (4.3) is a holomorphic function on the Riemann surface
M and, therefore, a constant (depending on moduli).

Genus one case. Let the Riemann surface M have genus one. In this case the Man-
delstam diagram M has one interior slit and the number of poles of the differential ω

(i. e. the points at infinity of the diagram M) equals to the number of zeros of ω (i.
e. the endpoints of the slits of the diagram M). For the poles and zeros we keep the
same notation P±k , Rl as before. Let B be the b-period of the normalized

(∫
a v = 1

)
differential v on the marked Riemann surface (M, {a, b}). Let

v(Rl) = v(P)

dζ(P)

∣∣∣
P=Rl

,

where ζ is the distinguished local parameter near Rl . The quantities v(P±k ) are defined
similarly. Define the function τ via

τ 12 = [�′
1(0 |B )

]8 ∏n−
k=1 v(P−k )

∏n+
j=1 v(P+

j )∏n
l=1 v(Rl)

, (4.4)

where �1 is the first Jacobi’s theta-function.
Case of genus g ≥ 2. Let the Riemann surfaceM have genus g ≥ 2. Following [10],

introduce the (multivalued) g(g − 1)/2-differential

C(P) = 1

W[v1, v2, . . . , vg](P)

g∑
α1,...,αg=1

∂g�(K P |B)

∂zα1 . . . ∂zαg

vα1 . . . vαg (P) ,
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where {v1, . . . , vg} is the normalized basis of holomorphic differentials onM,W is the
Wronskian determinant of the holomorphic differentials, K P is the vector of Riemann
constants. Let E(P, Q) be the prime-form onM (see [10]).

It is convenient to denote the zeros and poles of the meromorphic one-form ω by Dl .
The divisor of the one-form ω can be written as

(ω) =
∑
l

dl Dl ,

where dl = 1 if Dl is a zero and dl = −1 if Dl is a pole of ω.
Define the function τ via

τ = F2/3e−
π i
6 <r,Br>

∏
m<n

{E(Dm, Dn)}dmdn/6 , (4.5)

where the (scalar)

F = [ω(P)](g−1)/2e−π i<r,K P>

{∏
m

[E(P, Dm)] (1−g)dm
2

}
C(P)

is independent of the point P of the Riemann surface M and the integer vector r is
defined by the equality

A((ω)) + 2K P + Br + q = 0; (4.6)

here q is another integer vector and the initial point of the Abel map A coincides with
P . If one argument (or both) of the prime-form coincides with some point Dl then the
prime-form is computed with respect to the distinguished local parameter at this point.

Remark 6. If n− = n+ and if, moreover, there is a one-to-one correspondence between
the sets {Ok}n−k=1 and {Oj }nj=n−+1, then as M̊ one take the union ∪n−

�=1R × O� of n/2
infinite cylinders and follow a similar procedure to define a regularized determinant. As
a result the right hand sides of (4.3), (4.4), and (4.5) turns out to be invariant under the
horizontal shifts of the diagram z �→ z + C or, what is the same, independent of the
choice of the initial moment of time τ0 = 0.

The following theorem states that the logarithm of the modulus square of the just
introduced function τ has the same derivatives with respect to moduli as the quantity

log det(�,�̊)
det �B .

Theorem 6. Then the following variational formulas hold:

∂ log |τ |2
∂θk

= − 1

6π
�{
∮

γk

SB − Sω

ω

}
, k = 1, . . . , 3g + n − 3; (4.7)

∂ log |τ |2
∂hk

= 1

6π
�
{∮

bk

SB − Sω

ω

}
, k = 1, . . . , g; (4.8)

∂ log |τ |2
∂τk

= − 1

6π
�
{∮

±Ak±A′k∓Ck

SB − Sω

ω

}
. (4.9)
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Proof. The proof is completely similar to the proofs of [23, Theorems 6 and 7]. First,
one has to derive variational formulas (under variations of the moduli θk, τk , and hk) for
the basic objects on the compact Riemann surfaceM which appear as ingredients in the
explicit expression for the function τ (i.e. the basic holomorphic differentials, the matrix
of b-periods, the canonical meromorphic bidifferential, the prime-form, the vector of the
Riemann constants, and the multi-valued differential C). Then one has to check (4.7)–
(4.9) via direct calculation. We decided not to repeat this rather long calculation here,
we only sketch the proof in a relatively simple case of a low genus curve, where most
of the technicalities disappear. For instance, let us prove (4.7) in case g = 1.

Choose a canonical basis {a, b} of cycles on M and introduce the normalized holo-
morphic differential v such that

∫
a
v = 1 and

∫
b
v = B.

Take P ∈ �, then in vicinity of P ∈ M the ratio of the two one-forms v
dz defines a

scalar function. Denote the value of this function at P by v(P). For a fixed P this value
still depends on themoduli θk, hk, τk . Using the same idea as in the proof of Proposition 2
(see also [23, Proof of Theorem 3]), one can prove the following variational formula for
the v(P) with respect to the coordinate θk :

∂v(P)

∂θk
= 1

2π

∫
γk

W ( · , P)v

ω
, (4.10)

where W is the Bergman bidifferential and the one form W ( · , P) is defined as
W ( ·, Q)
dz(Q)

∣∣∣
Q=P

. Integrating (4.10) over the b-cycle, one gets the following variational

formula for the b-period:

∂B

∂θk
= i
∫

γk

v2

ω
. (4.11)

Moreover, since the distinguished local parameters (4.1) at P−k , P+
j and (4.2) at Rl are

moduli independent, (4.10) implies that

∂v(P−k )

∂θk
= 1

2π

∫
γk

W ( · , P−k )v

ω
, (4.12)

∂v(P+
j )

∂θk
= 1

2π

∫
γk

W ( · , P+
j )v

ω
, (4.13)

and
∂v(Rl)

∂θk
= 1

2π

∫
γk

W ( · , Rl)v

ω
, (4.14)

where, say, v(P−k ) = v

dζ−k

∣∣∣
Pk

and W (·, Rl) = W ( · ,Q)
dζl (Q)

∣∣∣
Q=Rl

, etc.

Now using (4.12)–(4.14)) and the well-known formula

W (z1, z2) =
[
P(

∫ z2

z1
v)− 4iπ

3

d

dB
log�′

1(0 |B)

]
v(z1)v(z2)
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for the Bergman bidifferential on an elliptic curve (see, e.g., [9]), whereP is the Weier-
strass P-function, we arrive at

∂θk log

∏n−
k=1 v(P−k )

∏n+
j=1 v(P+

j )∏n
l=1 v(Rl)

= 1

2π

∫
γk

v(Q)

ω(Q)

⎧⎨
⎩

n−∑
k=1

W (Q, P−k )

v(P−k )
+

n+∑
j=1

W (Q, P+
j )

v(P+
j )

−
n∑

l=1

W (Q, Rl)

v(Rl)

⎫⎬
⎭

= 1

2π

∫
γk

v2(Q)

ω(Q)

⎡
⎣

n−∑
k=1

P

(∫ Q

P−k
v

)
+

n+∑
j=1

P

(∫ Q

P+
j

v

)
−

n∑
l=1

P

(∫ Q

Rl
v

)⎤
⎦ .

(4.15)

Consider the meromorphic function R′ = ω
v
on M. (Clearly, it can be considered as

the derivative of the (mulivalued) map ξ = ∫ P
v �→ R(ξ) = ∫ P

ω). Observe that the
expression in the square brackets in (4.15) coincides with

d

dξ

(
R′′(ξ)

R′(ξ)

)
.

Therefore, using integrating by parts, (4.15) can be rewritten as

1

2π

∫
γk

1

R′(ξ)

d

dξ

(
R′′(ξ)

R′(ξ)

)
dξ = 1

2π

∫
γk

(R′′(ξ))2

(R′(ξ))3
dξ

= 1

π

∫
γk

{R, ξ}
R′(ξ)

dξ (4.16)

= 1

π

∫
γk

{∫ P
ω, ·

}
−
{∫ P

v, ·
}

ω
, (4.17)

where { · , · }denotes theSchwarzianderivative.The integrand in (4.17) is ameromorphic
one-form: the ratio of the difference of two projective connections (this difference gives
a quadratic differential) and a meromorphic one-form.

Moreover, using (4.11), we get

∂θk log
[
�′

1(0 |B )
]8 = 8i

∂ log�′
1(0 |B )

∂B

∫
γk

v2

ω

and, therefore,

∂θk log(τ
12) = 1

π

∫
γk

{∫ P
ω, · } −

[
{∫ P

v, · } − 8iπ
∂ log�′

1(0 |B )

∂B
v2
]

ω
, (4.18)

where τ is from (4.4). It is known (see, e. g., [9]) that the expression in square brackets
in (4.18) coincides with the Bergman projective connection. Therefore

∂θk log τ = − 1

12π

∫
γk

SB − Sω

ω
,

which proves (4.7). ��
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The following immediate corollary of Theorem 6 is the main result of the present
paper.

Corollary 1. One has the following explicit expression for the regularized determinant
of the Laplacian on the Mandelstam diagram M:

det(�, �̊) = C det �B |τ |2, (4.19)

where C is moduli independent constant.

Remark 7. If the unperturbed diagram M̊ is a disjoint union of infinite cylinders then the
regularized determinant det(�, �̊) is invariant with respect to horizontal shifts of the
diagram M (i. e. the choice of the initial moment of time τ0). The same is, of course,
true for the right hand side of (4.19), cf. Remark 6.
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the ANR programs METHCHAOS and NOSEVOL. The authors thank D. Korotkin for extremely useful
discussions. We thank also C. Kalla and D. Korotkin for communicating the results from [19] long before
their publication.

A. Appendix

A.1. Proof of Lemmas 1 and 2.

Proof of Lemma 1. The proof is based on well-known methods of the theory of elliptic
boundary value problems, see e.g. [28,29,31]. Recall that a bounded operator is said
to be Fredholm if its kernel and cokernel are finite dimensional and its range is closed.
We will rely on the following lemma due to Peetre, see e.g. [29, Lemma 3.4.1] or [31,
Lemma 5.1]:

Let X,Y and Z be Hilbert spaces, where X is compactly embedded into Z. Further-
more, let L be a linear continuous operator from X to Y. Then the next two assertions
are equivalent: (i) the range of L is closed in Y and dim kerL < ∞, (ii) there exists
a constant C , such that

‖u;X‖ ≤ C(‖Lu;Y‖ + ‖u;Z‖) ∀u ∈ X. (A.1)

Below we assume that

{μ2 − (ξ + iε)2 ∈ C : ξ ∈ R} ∩ {0, 4π2�2|Ok |−2 : � ∈ N, 1 ≤ k ≤ n} = ∅ (A.2)

and establish the estimate

‖u;Dε‖ ≤ C(‖(�ε − μ2)u; L2
ε(M)‖ + ‖u; L2(M)‖) (A.3)

of type (A.1).
Let R > 0 be so large that there are no conical points on M with coordinate x /∈

(−R, R). Take some smooth functions �k , 1 ≤ k ≤ n, on M satisfying

�k(p) =
{
1, p ∈ (−∞,−R − 1)× Ok (resp.p ∈ (R + 1,∞)× Ok),

0, p ∈M\(−∞,−R)× Ok (resp. p ∈M\(R,∞)× Ok),

if Ok is the cross-section of a cylindrical end directed to the left (resp. directed to the
right). We also set �0 = 1−∑k �k , then {�k}nk=0 is a partition of unity on M.
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Let L2
ε(R×Ok)be theweighted spacewith thenorm

(∫
R×Ok

|eγk xu(x, y)|2 dx dy)1/2,
whereγk = −ε if the corresponding cylindrical end ofM is directed to the left andγk = ε

if the end is directed to the right. Introduce the weighted Sobolev space H2
ε (R× Ok) as

completion of the set C∞c (R× Ok) in the norm

‖u; H2
ε (R× Ok)‖ =

( ∑
p+q≤2

‖∂ p
x ∂

q
y u; L2

ε(R× Ok)‖2
)1/2

.

For u ∈ Dε

(⊂ H1
ε (M)

)
we extend uk = �ku, 1 ≤ k ≤ n, to R × Ok by zero. Clearly,

the right hand side of the equation

(−∂2x + �Ok − μ2)uk = fk (A.4)

is in L2
ε(R×Ok). Applying the Fourier–Laplace transformFx �→ξ+iγk wepass from (A.4)

to the equation

(�Ok − μ2 + (ξ + iγk)
2)Fx �→ξ+iγkuk = Fx �→ξ+iγk fk, ξ ∈ R. (A.5)

The norm of the inverse of the operator �Ok −μ2 + (ξ + iγk)2 in L2(Ok) is bounded by
the reciprocal of the distance from the parabola

{μ2 − (ξ + iγk)
2 : ξ ∈ R} = {μ2 − (ξ + iε)2 : ξ ∈ R}

to the spectrum {0, 4π2�2|Ok |−2 : � ∈ N} of the selfadjoint Laplacian �Ok on Ok ,
cf. (A.2). This together with elliptic coercive estimates for�Ok and the Parseval equality
implies

‖uk; H2
ε (R× Ok)‖ ≤ c

∥∥(−∂2x + �Ok − μ2)uk; L2
ε(R× Ok)

∥∥ (A.6)

with an independent of u ∈ H2
ε (R× Ok) constant c; moreover, the operator

−∂2x + �Ok − μ2 : H2
ε (R× Ok) → L2

ε(R× Ok)

yields an isomorphism, see e.g. [29, Chapter 5] or [28] for details.
From (2.2) and (A.6) it immediately follows that

‖u;Dε‖ ≤
n∑

k=0
‖�ku;Dε‖ ≤ ‖(�ε − μ2)�0u; L2

ε(M)‖

+ (1 + |μ|2)‖�0u; L2
ε(M)‖ +

n∑
k=1

‖�ku; H2
ε (R× Ok)‖

≤ ‖(�ε − μ2)u; L2
ε(M)‖

+
n∑

k=0
‖[�k,�ε]u; L2

ε(M)‖ + (1 + |μ|2)‖�0u; L2
ε(M)‖.

(A.7)
Here the commutators [�k,�ε] are first order differential operators with smooth coeffi-
cients supported on a smooth compact part ofM. Local elliptic coercive estimates imply

‖[�k,�ε]u; L2(M)‖ ≤ C
(‖η(�ε − μ2)u; L2(M)‖ + ‖ηu; L2(M)‖), (A.8)
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where η ∈ C∞c (M) is such that η[�k,�ε] = [�k,�ε] and η�0 = �0. Now the esti-
mate (A.3) follows from (A.7) and (A.8). It remains to note that compactness of the
embedding Dε ↪→ L2(M) is a consequence of the compactness of

H2
ε (R× Ok) � �ku �→ �ku ∈ L2(R× Ok), D � �0u �→ �0u ∈ L2(M),

where the domain D of the selfadjoint Friedrichs extension of Dirichlet Laplacian on
MR = {p ∈M : |x | ≤ R} is compactly embedded into L2(MR).

The above argument also implies that the graph norm (2.2) inDε is equivalent to the
norm

‖u;Dε‖ $ ‖�0u;D‖ +
n∑

k=1
‖�ku; H2

ε (R× Ok)‖, (A.9)

and the space Dε consists of all elements u ∈ H1
ε (M) with finite norm (A.9).

In order to see that the cokernel of the operator (2.3) is finite-dimensional, one
can apply a similar argument to the adjoint m-sectorial operator (�ε)

∗ in L2
ε(M). In

particular, it turns out that the graph norm of (�ε)
∗ is equivalent to the norm (A.9) and

Dε is the domain of (�ε)
∗.

We have proved that the operator (2.3) is Fredholm if (A.2) holds true. Now we
assume that for some ξ ∈ R the number μ2 − (ξ + iε)2 coincides with an eigenvalue λ

of �Ok and show that the operator (2.3) is not Fredholm.
For instance, let Ok correspond to a cylindrical end directed to the right. Introduce

a cutoff function χ ∈ C∞(R) such that χ(x) = 1 for |x − 3| ≤ 1 and χ(x) = 0 for
|x − 3| ≥ 2. We set u�(p) = 0 for p ∈M\(R,∞)× Ok and

u�(x, y) = �k(x, y)χ(x/�) exp
(
i x(ξ + iε)

)
�(y), (x, y) ∈ (R,∞)× Ok, (A.10)

where �Ok� = λ�. Straightforward calculations show that

‖(�ε − μ2)u�; L2
ε(M)‖ ≤ C, ‖u�; L2(M)‖ ≤ C, ‖u�;Dε‖ → ∞

as � → +∞. Thus the sequence {u�} violates the estimate (A.3) and the operator (2.3)
is not Fredholm. ��
Proof of Lemma 2. As the result is essentially well-known, see e.g. [29, Chapter 5]
or [28], we only give a sketch of the proof. The notations below are the same as in the
proof of Lemma1. Let u = (�0−μ2)−1 f . Thenuk = �ku ∈ H2

0 (R×Ok), 1 ≤ k ≤ n, is
a (unique) solution to the equation (A.4)with right hand side fk = �k f −[�,�k]u, where
fk is extended to R × Ok by zero. The inclusion f ∈ L2

ε(M) implies that the function
ξ �→ f̂k(ξ) = Fx→ξ fk ∈ L2(Ok) is analytic in the strip |�ξ | < ε with boundary values

satisfying
∫
R
‖f̂k(ξ ± iε); L2(Ok)‖2 dξ < ∞. We have

uk = F−1
ξ→x (�Ok − μ2 + ξ2)−1 f̂k(ξ).

Let ε > 0 be such that 2ε is less than the first positive eigenvalue of �Ok . Then the
resolvent (�Ok −μ2 +ξ2)−1 is a meromorphic function of ξ in the strip−2ε ≤ �ξ ≤ 2ε
having poles at ξ = ±μ, which correspond to the zero eigenvalue and the constant
eigenfunction of �Ok . This together with the Cauchy’s integral theorem implies that,
for γk = ±ε

uk(x, y) = vk(x, y) + Cke
sign(γk )iμx ,

vk = F−1
ξ→x (�Ok − μ2 + (ξ + iγk)

2)−1 f̂k(ξ + iγk),
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where vk is a unique in H2
ε (R×Ok) solution to the equation (A.4) and Ck ∈ C depends

onμ and fk . The termCkesign(γk )iμx = Ckeiμx (resp.Ckesign(γk )iμx = Cke−iμx ) appears
as the residue at the pole ξ = μ (resp. ξ = −μ) if Ok corresponds to a right (resp. left)
cylindrical end. As a consequence, for some ck ∈ C we have �ku − ckϕk(μ) ∈ Dε ,
cf. (2.4). Since �0u ∈ Dε , we conclude that (2.5) is valid provided

0 < 2ε2 < λ = min
�∈N,1≤k≤n

4π2�2|Ok |−2,

where λ is the first positive eigenvalue of the selfadjoint Laplacian on the union of
O1, . . . , On . ��

A.2. Existence of embedded eigenvalues. In this subsection we demonstrate that the
selfadjoint Laplacian � on (M,m) can have eigenvalues embedded into the continuous
spectrum σc(�) = [0,∞). Let us construct a simple suitable example of (M,m).

Consider the following strip with two semi-infinite slits:

S = {x + iy ∈ C : |x | ≥ π, 0 < |y − π/2| < π/2}
∪{x + iy ∈ C : −π < x < π, 0 < y < π}.

Let�D be the Friedrichs selfadjoint extension of the Laplacian−∂2x−∂2y initially defined
on the set C∞0 (S\{−π + iπ/2, π + iπ/2}). It is easy to check that �D is positive and
its continuous spectrum is [4,∞). The first eigenvalue of the Dirichlet Laplacian in the
square (−π/2, π/2) × i(0, π) ⊂ S is 2. Extending the corresponding eigenfunction
cos x sin y to the strip S by zero, one obtains some function u in the domain H1(S) of
the quadratic form q of �D . Clearly, q[u, u] = 2. Then the minimax principle implies
that �D has at least one (discrete) eigenvalue λ ≤ 2 below the continuous spectrum
[4,∞). We extend the corresponding eigenfunction U to S̄ = {x − iy : x + iy ∈ S} by
settingU (x,−y) = −U (x, y). Thus we constructed an eigenfunctionU corresponding
to the (embedded) eigenvalue λ ∈ (0, 2] of the Laplacian� on the Mandelstam diagram
(M,m), whereM is obtained from S∪ S̄ by the following identifications of boundaries:

R + iπ − i0 with R− iπ + i0; R + i0 with R− i0;
{x + iπ/2 + i0 : |x | ≥ π} with {x − iπ/2− i0 : |x | ≥ π};
{x + iπ/2− i0) : |x | ≥ π} with {x − iπ/2 + i0 : |x | ≥ π}.

B. Appendix (By A. Kokotov and D. Korotkin)

Comparison of formula (4.19) with results of H. Sonoda and V. Knizhnik
Following the referee’s proposal we discuss here the relation of the main result of

the present paper (Corollary 1), as well as the results of previous papers [23,24] of the
authors of this appendix, to the results of string theorists obtained in 1980’s.

We shall focus on heuristic formulas obtained in works by H. Sonoda [41] and V.
Knizhnik [21] using the quantum field theory approach. Recall that Polyakov’s formula
relates the ζ -regularized determinants of the Laplacians corresponding to two smooth
conformally equivalent metrics ρ1, ρ2 on a compact Riemann surface: the ratio

det�ρ1/Area(M, ρ1)

det�ρ2/Area(M, ρ2)
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is represented as the exponent of the so-called Liouville action depending on the smooth
conformal factor ρ1/ρ2 relating the two metrics as well as on the curvature and the
volume element of, say, ρ1 (see, e.g. formula (3.31) of [10]).

To regularize the ratio of the determinant of Laplacian in a singular metric to the
(finite or infinite) area of the surface Sonoda [41] (as well as D’Hoker and Phong [7])
extrapolates Polyakov’s formula to the case when one of the metrics is smooth and
another is singular. The det� in a singular metric obtained in this way has no a priori
relation to the spectral theory. Moreover, such procedure is ambiguous by the following
reason: the Liouville integral relating the singular and the smooth metrics is in fact
diverging. A regularization of this integral involves a choice of local parameters ζk near
singularities and removal of small discs {|zk | < ε} with subsequent use of the standard
Hadamard-type regularization.

Luckily, the determinant of Laplacian obtained via such procedure is independent of
the choice of the reference smoothmetric. However, it turns out to transform like a tensor
with respect to a change of any of the local parameters ζk ; therefore, the determinant of
the Laplacian in a singular metric defined in [7,41] is not a scalar but a tensor depending
on N arguments (where N is the number of singularities).

Using Arakelov metric as the smooth reference metric, this procedure was carried
out explicitly in [41] to give an expression for the regularized determinant of Laplacian
in a metric given by modulus square of a meromorphic Abelian differential with simple
poles and real periods (formula (6.3) on page 178 of [41]); as we explained above the
relationship of this object to the spectral determinant is a priori unclear. However, if
one compares Sonoda’s expression with formulas derived in [23,24] as well as with
formulas of this paper one can see that, choosing the local parameters ζk appropriately,
the formula (6.3) of [41] indeed coincides with (4.19). The appropriate choice is to
take ζk to coincide with the distinguished local parameters of the flat metric near the
singularities (conical points and cylindrical ends).

Let us describe this relationship inmore technical terms. To compare the formula (6.3)
from [41] with our expression we shall rewrite this formula by introducing “Sonoda’s
tau-function” τS which is related to the quantity ZX from [41] (entering formula (2.3)
from [41]) by ZX = |τS|−24. To avoid unnecessary technicalities let us assume that the
integer vectors r and q from (4.6) vanish (these vectors are denoted by M and N in [41];
vanishing of r and q can always be achieved by an appropriate choice of the fundamental
domain if at least one zero of ω is simple [23]; in this we discuss the case when all the
zeros of ω are simple).

Then in notations used in the present paper formula (6.3) from [41] for the τS (after
regrouping of terms) looks as follows:

τS =
(

�(
∑g

i=1A(xi )−A(q) + K )
∏

1≤i< j≤g E(xi , x j )

det(vi (x j ))
∏

i E(q, xi )

)2/3

×
∏

1≤m<n≤N

Edmdn/6(Dm, Dn)

(∏N
m=1 E(q, Dm)

ω(q)

)1/3 g∏
i=1

(
ω(xi )∏N

m=1 Edm (xi , Dm)

)1/3

. (B.1)

Hereq and x1, . . . , xg are arbitrary points onM. It is easy to see that expression (B.1) does
not have singularities on M with respect to any of these auxiliary variables; moreover,
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automorphy factors of (B.1) with respect to any of these variables are trivial. Therefore,
(B.1) is in fact independent of the choice of q and x1, . . . , xg . However, as it stands,
Sonoda’s formula (B.1) does depend on the choice of local parameters near points Di .
(The dependence of the Abel mapA and the vector of Riemann constants K on the initial
point is not explicitly mentioned in (B.1) since the arguments of the theta-functions are
in fact independent of the choice of this point.)

It turns out that if local parameters at conical points are chosen to be the distinguished
local parameters defined by the differential ω formula (B.1) coincides with (4.5).

To verify this coincidence we make use of the following formula for C(P) given by
Fay [10, formula (1.17)]:

C(P) = �
(∑g

1 A(xi )−A(q) + K
)∏g

i< j E(xi , x j )∏g
1 E(q, xi )det (vi (x j ))

∏g
1 σ(x j , p)

σ (q, p)
, (B.2)

where q, p, x1, . . . , xg are arbitrary points of M; the quantity σ(x, y) is defined via
formula (1.13) from [10]:

σ(x, y) = �
(∑g

i=1A(yi )−A(x) + K
)

�
(∑g

i=1A(yi )−A(y) + K
)

g∏
i=1

E(yi , y)

E(yi , x)
, (B.3)

where y1 + · · · + yg is an arbitrary non-special divisor on M; σ(x, y) is independent of
the choice of the points yi . Clearly, σ(x, x) = 1.

Comparing (4.5) with formula (B.1), we conclude that

τ 3S

τ 3
=
∏g

i=1 ω(xi )

ω(q)

N∏
m=1

(
E(q, Dm)∏g

i=1 E(xi , Dm)

)dm

×
(

ω(p)
N∏

m=1
Edm (p, Dm)

)1−g
σ 2(q, p)∏g

i=1 σ 2(xi , p)
. (B.4)

Since the expression (B.4) is independent of q, p and x1 . . . , xg , one can compute it by
taking the limit as q and all xi tend to p. Since σ(x, x) = 1, the right-hand side of (B.4)
tends to 1, and, therefore, equals to 1 identically.

Wewould also like to brieflymention relations of tau-function (4.5) with other heuris-
tic considerations of string theorists in 1980’s, namely, with the notion of the determinant
of ∂̄-operator on a Riemann surface (which in physics terms plays the role of the chiral
partition function of a system of free bosons on a Riemann surface). In fact det ∂̄ did not
have a rigorous mathematical definition at that time, although it was entering the holo-
morphic factorization formula for the determinant of Laplace operator in an appropriate
metric (the Belavin–Knizhnik “theorem” [1]).

In the special case when the curve M is hyperelliptic with corresponding degree 2
meromorphic function denoted by f and the differential ω chosen to coincide with d f ,
the tau-function τ is the main block of the Jimbo–Miwa tau-function corresponding to
the 2 × 2 matrix Riemann–Hilbert problem with off-diagonal monodromies [18]. In
physics terms, the hyperelliptic tau-function coincides with the chiral partition function
of the Ashkin–Teller model [43], and is defined to be det ∂̄ on the hyperelliptic curve
(see also [27] for discussion).

Another instance of an explicit formula for det ∂̄ which can be found in physics
literature corresponds to a Riemann surface with conical flat metric given by the 4th
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power of the module of a holomorphic spinor h defined by h2 = ∑g
i=1 ∂i�∗vi (z),

where ∗ is an arbitrary non-singular odd theta-characteristic.
The formula for det ∂̄ in this setting was proposed by Knizhnik (formula (7.25) of

the paper [21]):

(det∂̄0)
3/2 =

∑
i ∂i�∗vi (z)

det||v(z)v(R1) . . . v(Rg−1)|| , (B.5)

where v is the vector (v1, . . . , vg) of the normalized Abelian differentials; 2R1 + · · · +
2Rg−1 is the divisor of theAbelian differentialω = h2. Aswell as in the case of Sonoda’s
formula (B.1), expression (B.5) is not completely defined without a concrete choice of
local parameters near points R1, . . . , Rg−1. However, if one chooses the distinguished
local parameters near these points and uses Corollary (2.17) from [9] (the second formula
on page 31) together with Theorem 7 from [23], one identifies Knizhnik’s determinant
of ∂̄-operator with the Bergman tau-function on the stratum Hg(2, . . . , 2) of the moduli
space of Abelian differentials [23]. In particular, from results of [23] it follows that

det�|ω|2 = const Area (M, |ω|2)det�B|det ∂̄0|2,

whereω is a holomorphic differential with double zeros and det�|ω|2 is the ζ -regularized
determinant of the self-adjoint Friedrichs extension of the symmetric operator �|ω|2

(the latter self-adjoint operator has discrete spectrum and the ordinary Ray-Singer ζ -
regularization procedure can be applied to define its determinant).

Finally, we notice that the geometrical meaning of the Bergman tau-function on
various moduli spaces and its relationship to the determinant of the Hodge vector bundle
over moduli spaces was recently clarified in the papers [22,25,26]. In particular, this
allows one to find new relations between various divisor classes on Hurwitz spaces and
moduli spaces of Abelian and quadratic differentials.
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