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Abstract Using the Krein formula for the difference of the resolvents of two self-
adjoint extensions of a symmetric operator with finite deficiency indices, we es-
tablish a comparison formula for ζ -regularized determinants of two self-adjoint ex-
tensions of the Laplace operator on a Euclidean surface with conical singularities
(E.s.c.s.). The ratio of two determinants is expressed through the value S(0) of the
S-matrix, S(λ), of the surface. We study the asymptotic behavior of the S-matrix,
give an explicit expression for S(0) relating it to the Bergman projective connec-
tion on the underlying compact Riemann surface, and derive variational formulas for
S(λ) with respect to coordinates on the moduli space of E.s.c.s. with trivial holon-
omy.
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1 Introduction

Spectral geometry aims at understanding the relations between the spectrum of some
Laplace operator in a given geometrical setting and geometric properties of the lat-
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ter. Polygons and polyhedra are among the simplest shapes one can consider and one
could hope in this setting for a better understanding. This leads naturally to studying
the spectral geometry of Euclidean surfaces with conical singularities. Another mo-
tivation is the spectral theory of translation surfaces for which the geometric picture
has many interesting developments (see [29], for instance).

One peculiarity of Laplacians on manifolds with conical points is that, due to the
presence of conical points, a choice has to be made in order to get a self-adjoint
operator. In this paper, we are interested in understanding how this choice affects
several spectral quantities such as the resolvent and the zeta-regularized determinant.
Depending on the self-adjoint extension, this zeta-regularization procedure is not as
straightforward as usual because of unusual behavior of the zeta function, but it is
still possible to define such a regularization (see [12, 17] and Sect. 5.3), and we will
prove a comparison formula for these determinants.

Comparison formulas for regularized determinants for conical manifolds were first
found in [22] using a surgery formula à la BFK (see [5]), and in [17] using a contour
integral method based on a secular equation that defines the spectrum. One of our
motivations was to understand how the comparison formulas for different self-adjoint
extensions from [22] read in the case of Euclidean surfaces with conical singularities
and whether it is possible to express the determinants of the non-Friedrichs self-
adjoint extensions of the Laplacian on these surfaces through holomorphic invariants
of the underlying Riemann surface (as it was done in [19] for the determinant of the
Friedrichs extension). Indeed, Euclidean surfaces with conical singularities are our
primary interest, and we will restrict to this setting although many statements still
make sense for more general conical manifolds.

It turns out that the geometric interpretation of the formulas obtained in [22] and
[17] is not that straightforward, and we have found it more convenient to establish
the comparison formula for determinants using the Krein formula for the difference
of resolvents of two self-adjoint extensions of a symmetric operator. We observe that
the trace of the difference of two resolvents admits a nice representation through the
so-called S-matrix of a Euclidean surface with conical singularities (E.s.c.s.) X. The
latter matrix, or, more precisely, the meromorphic family of matrices S(λ) is in some
sense a characteristic feature of X. Indeed, we believe that some of the geometry of
X (such as, for instance, the lengths of saddle-connections between conical points;
see Remark 4.3) is encoded in S(λ), although it seems quite difficult to retrieve this
kind of information. We should also remark that this S-matrix allows to write down
a secular equation that can then be treated using the approach of [17] so that what
we propose here may be seen as a geometric interpretation for the latter method. The
comparison with [22] is less straightforward; it relies on interpreting the S-matrix as
some kind of limiting Dirichlet-to-Neumann operator on a circle around the conical
point when the radius of that circle goes to 0. It can be noted here that, in contrast
with [22], no extra condition is needed to obtain our formula.

We will thus prove the following theorem. The notion of regular self-adjoint ex-
tensions will be introduced in Definition 5.2, and, for these self-adjoint extensions,
the expression P + QS(0) makes sense (see Remark 5.5).
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Theorem 1 On a compact E.s.c.s. X, let S(λ) be the S-matrix and �F be the
Friedrichs extension.

Let P and Q be matrices that define a regular self-adjoint extension �L, and
define

D(λ) := det
(
P + QS(λ)

)
.

Let d be the dimension of ker(P + QS(0)) and let D∗(0) := limλ→0(−λ)−dD(λ).
There exist α0 and � such that the asymptotic expansion of D(−|λ|) as λ goes

to ∞ is

lnD
(−|λ|) := α0 ln

(|λ|)+ � + o(1).

The following identity then holds:

det∗ζ (�L) = exp(−�)D∗(0)det∗ζ (�F ),

in which det∗ζ is the modified zeta-regularized determinant (see Definition 5.14).

To fulfill our second aim, we then need to understand more explicitly what kind
of geometric information is encoded in the family S(λ). We focus on the limiting
behavior when the spectral parameter goes to 0, since this is the regime that comes
up in the comparison formula. We will prove that most of the matrix elements in
this limit have an interpretation through values of the Bergman projective connec-
tion and the basic holomorphic differentials taken at the conical point in the corre-
sponding distinguished holomorphic local parameter (see Sect. 4.3). Since we expect
translation surfaces to have particular and interesting features, we will also say a
word about the S-matrix on these special kinds of surfaces. Namely, we will de-
rive variational formulas for the S-matrix when it is differentiated with respect to
moduli parameters. These results answer most of the questions which motivated our
study.

Organization of the Paper In Sect. 2, we will recall the basic facts about Euclidean
surfaces with conical singularities. In particular, we will recall that these can be
viewed as Riemann surfaces with flat conformal conical metric.

In Sect. 3, we recall some basic properties of the Friedrichs Laplace operator on
E.s.c.s., and introduce the object of our primary interest—the S-matrix; we also
derive here the standard formula for the derivative of the S-matrix with respect
to λ.

In Sect. 4, we study the asymptotic behavior of S(λ) as λ goes to −∞, and find
the geometric interpretation of S(0). We also apply the variational formulas of [19]
to obtain the variations of S(λ) with respect to moduli parameters on translation sur-
faces.

In Sect. 5, we study various self-adjoint extensions of the Laplace operator on
E.s.c.s. and prove the comparison formula for their ζ -regularized determinants.
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2 Euclidean Surfaces with Conical Singularities

2.1 Euclidean Surfaces with Conical Singularities as Riemann Surfaces with
Conformal Flat Conical Metrics

A Euclidean surface with conical singularities (E.s.c.s.) is a compact (orientable) sur-
face glued from Euclidean triangles. One can take as an example of such a surface the
boundary of a connected but not necessarily simply connected polyhedron in R

3 [18].
When two triangles are glued together and after rotating one of the triangles

around the common edge, we observe that the intrinsic geometry of the surface is
locally that of the plane. There, the surface actually is smooth and equipped with a
smooth Euclidean metric. At a vertex p where k triangles with angles ϑ1, . . . , ϑk are
glued together, the surface is locally isometric to a neighborhood of the tip of the
Euclidean cone of total angle θp = ϑ1 + · · · + ϑk . The surface X is thus equipped
with a Euclidean metric that is smooth except at the vertices p for which θp �= 2π .

It follows, for instance from [27], that X can be provided with a complex analytic
structure becoming a compact Riemann surface X̃; moreover, the usual Euclidean
metric on X gives rise to a flat conformal (i.e., defining the same complex structure)
metric on X̃. Abusing notation slightly, from now on we won’t make any difference
between X and X̃.

On the other hand, consider a flat conformal metric m with conical singularities
on a Riemann surface X. In a vicinity of a conical point p, m can be written as

m = ∣∣g(z)
∣∣|z|2b|dz|2,

where z is a holomorphic local parameter near p, z(p) = 0, b > −1, and g(z) is a
holomorphic function of the local parameter such that g(0) �= 0.

It is shown in [27] that one can choose a holomorphic change of variables z = z(ζ )

such that
∣∣g
(
z(ζ )

)∣∣∣∣z(ζ )
∣∣2b∣∣z′(ζ )

∣∣2 = |ζ |2b (2.1)

and, therefore,

m = |ζ |2b|dζ |2 (2.2)

in the local parameter ζ . This means that the Riemannian surface (X,m) near p is iso-
metric to the standard Euclidean cone of angle 2π(b+1). Troyanov [27] showed that
the Riemannian manifold (X,m) can be triangulated in such a way that all the conical
points will be among the vertices of the triangulation, meaning thus that (X,m) is an
E.s.c.s.

Definition 1 Let X be a compact Riemann surface with conformal flat conical met-
ric (i.e., an E.s.c.s.) and let p ∈ X be a conical point. Then any holomorphic local
parameter ζ in which the metric takes the form (2.2) is called distinguished.

Notation We will denote by P the set of conical points and by X0 := X \ P the
complement of P in X. We set M := Card(P ) the number of conical points. At each
p ∈ P , the total cone angle is denoted by θp .
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2.1.1 Translation and Half-Translation Surfaces

A translation (resp., half-translation) surface is an E.s.c.s. that has trivial holonomy
(resp., holonomy group Z2).

These are important examples of E.s.c.s. with very nice geometric properties (see
[29] for a survey on these).

Translation surfaces are Riemann surfaces X that are equipped with a confor-
mal flat conical metric given by the modulus square, m = |ω|2, of a holomorphic
1-form (an Abelian differential) ω. If P is a zero of ω of multiplicity k, then p

is a conical point of the translation surface X with conical angle 2π(k + 1). The
moduli space Hg of pairs (X,ω) (where X is a compact Riemann surface of genus
g ≥ 1 and ω is a holomorphic 1-form on X) is stratified according to the multiplic-
ities of the zeros of the 1-form ω. Denote by Hg(k1, . . . , kM) the stratum consisting
of pairs (X,ω), where ω has M zeros, p1, . . . , pM of multiplicities k1, . . . , kM (ac-
cording to Riemann–Roch theorem, one has k1 + · · · + kM = 2g − 2). The stratum
Hg(k1, . . . , kM) is a complex orbifold of dimension 2g + M − 1.

Let (X,ω) ∈ Hg(k1, . . . , kM). Choose a canonical basis of cycles {aα, bα} on the
Riemann surface X and take M − 1 contours γk , k = 2, . . . ,M , on X connecting p1

with p2, . . . , pM

The local coordinates on Hg(k1, . . . , kM) (which are called Kontsevich–Zorich
homological coordinates; see [20]) are given by the following integrals:

Aα =
∮

aα

ω; α = 1, . . . , g,

Bα =
∮

bα

ω; α = 1, . . . , g,

zk =
∫

γk

ω; k = 2, . . . ,M − 1.

A half-translation surface is a compact Riemann surface with flat conical metric
m = |q|, where q is a meromorphic quadratic differential with at most simple poles.

Example 2.1 Consider the Riemann sphere CP 1 with metric

|z|2|dz|2
∏6

k=1 |z − zk|
,

where zk ∈ C, zk �= 0, and zi �= zk if i �= k. This is a half-translation surface with 7
conical points 0, z1, . . . , z6. The conical angle at 0 is 4π ; the conical angles at each
point zk are equal to π .

Such a surface can be viewed by considering a Euclidean pair of pants (with one
4π singularity) and by sewing each leg and the waist with itself (thus creating the six
π singularities).
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3 The Friedrichs Laplacian and the S-Matrix

Let X be a compact E.s.c.s. In this section we will recall the definition of the
Friedrichs Laplacian associated with the (singular) metric and define the so-called
S-matrix. We will then collect several properties of this matrix.

We denote by � the minimal closed extension of the Euclidean Laplacian defined
on C∞

0 (X0), and by �∗ its adjoint with respect to the Euclidean L2 scalar product

〈u,v〉 :=
∫

X

uv dx.

Near each conical point p, any u ∈ dom(�∗) has the following asymptotic behav-
ior in polar coordinates (r, θ) (see, e.g., [22–24], or [19]):

u(r, θ) =√
2θp

(
a+

0 + a−
0 ln(r)

)+
∑

ν

√
2|ν|θp

(
a+
ν r |ν| + a−

ν r−|ν|) exp(iνθ) + u0,

(3.1)
where ν ranges over Np := { 2π

θp
· k, |k ∈ Z\{0}, |k| < θp

2π
}, and u0 ∈ dom(�).

Notation We will denote by N =⋃
p∈P Np , and we will abusively still denote by

ν an element of N . Choosing an element ν of N thus amounts to choosing a conical
point p and then some ν in Np . Unless needed, we will omit the reference to p.
The square root prefactors in (3.1) are just normalization constants. We will denote
these constants by C0 :=√

2θp and Cν :=√
2|ν|θp (we recall that since ν implicitly

depends on p, so does Cν ).
In the distinguished local parameter ζ near p we have, for ν = 2π

θp
· k,

ζ k = rν exp(iνθ) =
{

r |ν| exp(iνθ) if ν > 0,

r−|ν| exp(iνθ) if ν < 0.
(3.2)

ζ
−k = r−ν exp(iνθ) =

{
r |ν| exp(iνθ) if ν < 0,

r−|ν| exp(iνθ) if ν > 0.
(3.3)

Thus the asymptotic expansion (3.1) may also be written

u(ζ, ζ̄ ) = C0
(
a+

0 + a−
0 ln(|ζ |))

+
θp
2π

−1∑

k=1

C
k 2π

θp

(
a+
k ζ k + a−

k ζ̄−k + a+
−kζ̄

k + a−
−kζ

−k
)+ u0. (3.4)

A straightforward application of Green’s formula (combined with the choice of
the normalization constants C0, Cν ) then implies that, for any u,v in dom(�∗),

〈
�∗u,v

〉− 〈
u,�∗v

〉=
∑

p∈P

[
a+

0 · b−
0 − a−

0 · b+
0 +

∑

ν∈Np

(
a+
ν · b−

ν − a−
ν · b+

ν

)]
, (3.5)
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where the a±
ν are the coefficients in the expansion of u and the b±

ν those in the ex-
pansion of v.

Setting G(u, v) := 〈�∗u,v〉−〈u,�∗v〉, we define a Hermitian symplectic form on
dom(�∗)/dom(�) whose Lagrangian subspaces parameterize the self-adjoint exten-
sions of �.

3.1 The Friedrichs Extension

For any u ∈ dom(�), a straightforward integration by parts gives

〈�u,u〉 =
∫

X

|∇u|2dx,

so that the Friedrichs procedure (see [4] Sect. 10.3 or [26] Theorem X.23) provides us
with a self-adjoint extension that we denote by �F . Since a function u in dom(�F )

is characterized by ∇u ∈ L2(X), we obtain the following lemma.

Lemma 3.1 The Lagrangian subspace in dom(�∗)/dom(�) that corresponds to the
Friedrichs extension is

{
a−
ν = 0

}
.

Definition 2 We denote by Hs := dom(�
s
2
F ) the scale of Sobolev spaces associated

with it. In particular, we set dom(�F ) := H 2.

Remark 1 This definition of Hs is not completely standard. In particular, because of
the conical singularities, for m > 1 the following inclusion is strict (see [11] for a
much more detailed discussion about this fact):

{
u ∈ L2 | ∀|α| ≤ m,∂αu ∈ L2}⊂ Hm.

By standard spectral theory, the resolvent of �F defines a continuous operator
from Hs to Hs+2. We also recall that since X is compact, the Rellich-type injection
theorem from [8] implies that �F has compact resolvent, so that the spectrum is
non-negative and discrete.

3.2 The S-Matrix

We will now define a matrix associated with the flat structure and with the choice of
the Friedrichs extension.

First, for any ν, we fix Fν = Cνr
−|ν| exp(iνθ)ρ(r), where ρ is some fixed cut-off

function that is identically 1 near the corresponding conical point p.
We define �ν to be the linear functional on H 2 satisfying

∀u ∈ H 2, �ν(u) = G(u,Fν). (3.6)

We have the following lemma.
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Lemma 3.2 The linear functional �ν is continuous on H 2 and

∀u ∈ H 2, �ν(u) = a+
ν ,

where a+
ν is the coefficient in the expansion (3.1) of u near p.

Proof The fact that Fν ∈ dom(�∗) implies that �ν is indeed continuous. The second
statement follows from the respective asymptotic behaviors of Fν and u near p. �

Remark 3.3 The preceding lemma in particular implies that the linear functional �ν

doesn’t depend on the choice of the cut-off function ρ.

For λ ∈ C \ [0,∞), we set

Gν(·;λ) := (�F − λ)−1�ν.

Since �ν is in H−2, Gν is in L2, and for any u ∈ H 2, we have

�ν(u) = 〈
(�F − λ)u,Gν(·;λ)

〉
. (3.7)

Since the resolvent is analytic in λ, Gν(·;λ) defines an analytic family of L2 func-
tions.

Observe that the latter equation is equivalent to

(
�∗ − λ

)
Gν(·;λ) = 0,

so that Gν(·;λ) ∈ dom(�∗). Moreover, by testing against an appropriate u ∈ H 2

we can compute the coefficients a−
μ of Gν . This yields a−

μ = δμν (where δ is the
Kronecker symbol).

The following proposition gives a formula for Gν .

Proposition 3.4 For any λ ∈ C \ [0,∞), set fν(·;λ) := (�∗ − λ)Fν and gν(·;λ) :=
−(�F − λ)−1fν(·;λ). Then gν(·;λ) is an analytic family in H 2 and

Gν(· ;λ) = Fν(·) + gν(· ;λ).

Proof Computation shows that fν is in L2(X), which yields that gν is in H 2 since
λ is in the resolvent set of �F . Since fν and the resolvent depend analytically on λ,
so does gν . By construction, (�∗ − λ)(Fν + gν) = 0 and all the a−

μ coefficients of
Gν − (Fν +gν) vanish. This means that the latter function is in H 2 and thus is 0 since
λ is in the resolvent set. �

Example 3.5 Let us consider the complete cone [0,∞)×R/αZ. Using separation of
variables we have that Gν(r, θ;λ) = k(r) exp(iνθ). For ν �= 0, by definition k is the
unique solution to

−k′′ − 1

r
k′ +

(
ν2

r2
− λ

)
k = 0,
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which is in L2(rdr) and asymptotic to Cνr
−|ν| near 0. Thus k is proportional to

Kν(
√−λr), where Kν is a Bessel–MacDonald function (see [25], for instance).

For ν = 0, the singular behavior is logarithmic, but k(r) is still proportional to
K0(

√−λr).

Definition 3.6 (The S-matrix) We define the S-matrix S(λ) by

Sμν(λ) = �μ

(
gν(·;λ)

)
. (3.8)

Remark 3.7 Alternatively, Sμν(λ) is the a+
μ coefficient of gν(·;λ). It is also the a+

μ

coefficient of Gν(·;λ). Observe that the entries of the S-matrix are numbered by
non-integer numbers.

Using (3.7), we have the following alternative expression:

Sμν(λ) = 〈
(�F − λ)gν(·;λ),Gμ(·;λ)

〉= 〈
fν(·;λ),Gμ(·;λ)

〉
.

It follows from the analyticity of gν that S(λ) is analytic on C \ [0;∞).

Example 3.8 We define Sα(λ) to be the S-matrix of the cone of angle α. According
to Example 3.5, Sα(λ) is diagonal. Moreover, the asymptotic expansion of Bessel–
MacDonald functions near 0 is

K0(z) = − ln(z) + ln(2) − γ + o(1),

K|ν|(z) = π

2 sin(|ν|π)

[
z−|ν|

2−|ν|�(1 − |ν|) − z|ν|

2|ν|�(1 + |ν|) + O
(
z2−|ν|)

]
,

where � is the Euler gamma function and γ is Euler’s constant (see, for instance,
[25]). This yields

[
Sα(λ)

]
00 = ln

(√−λ
)− (

ln(2) − γ
)
,

[
Sα(λ)

]
νν

= −�(1 − |ν|)(−λ)|ν|

22|ν|�(1 + |ν|) .

The interpretation of S(λ) is given by the following lemma.

Lemma 3.9 For any λ ∈ C \ [0,∞) and any F ∈ ker(�∗ −λ). Denote by A±(F ) the
vector consisting of all the coefficients a−

ν (resp., a+
ν ) of F . Then we have

A+ = S(λ)A−.

Remark 3.10 Interpreting A− as some kind of incoming data and A+ as the outgoing
data justifies the interpretation of the S-matrix as a scattering matrix.

Proof Set F̃ :=∑
ν a−

ν Gν(·;λ). Then F − F̃ is in dom(ker(�∗ − λ)). Since all the
a−
ν vanish, F − F̃ actually is in dom(�F ). This implies F = F̃ , since λ is in the
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resolvent set of �F . Writing each Gν = Fν + gν , we obtain:

a+
μ = �μ

(∑

ν

a−
ν gν

)
=
∑

ν

S(λ)μνa
−
ν .

�

Remark 3.11 Until now we haven’t used the fact that the underlying metric actually is
Euclidean with conical singularities. The preceding construction is fairly general and
can be made on any manifold with conical singularities. Actually, it can be done in
an abstract manner for any symmetric operator with (equal) finite deficiency indices
(compare with Sect. 13.4 of [14]).

Before coming to the main aim of this paper, which is to understand how much ge-
ometric information is contained in the S-matrix, we first derive two basic properties
of Sμν(λ).

3.3 Derivative of the S-Matrix

In this subsection, a dot will mean differentiation with respect to λ, and we prove the
following lemma.

Lemma 3.12 On C \ [0,∞), we have

Ṡμν = 〈
Gν(·;λ),Gμ(·;λ)

〉
. (3.9)

Proof We start from the relation

(�F − λ)gν(·;λ) = −�∗Fν(·) + λFν(·),

which we differentiate with respect to λ. Since Fν doesn’t depend on λ, and gν is
analytic in H 2, we obtain

(�F − λ)ġν(·;λ) = Fν(·) + gν(·;λ) = Gν(·;λ).

This gives

Ṡ(λ)μν = �μ

(
ġν(·;λ)

)

= �μ

(
(�F − λ)−1Gν(·;λ)

)

= 〈
Gν(·;λ),Gμ(·;λ)

〉
,

where we have used (3.7) for the last identity. �

3.4 Relation with the Resolvent Kernel

Denote by R(x, x′;λ) the resolvent kernel of the Friedrichs extension �F .
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Fix x′ ∈ X0. As a function of the first argument, R(·, x′;λ) is locally in H 2 near
each conical point p. Thus, according to (3.1), there exists a collection a+

ν (x′;λ) such
that in the neighborhood of p we have the following asymptotic expansion:

R
(
r exp(iθ), x′;λ)=

∑

ν∈Np

Cνa
+
ν

(
x′;λ)r |ν| exp(iνθ) + r0, (3.10)

with r0 ∈ C∞
0 (X0)

H 2

.
Using (3.6), we see that a+

ν (x′;λ) = G(R(·, x′;λ),Fν), and thus the former ex-
pansion may be differentiated with respect to x′ in any compact set of X0.

The following proposition makes the relation between a+
ν (x′;λ) and Gν(x

′;λ)

more explicit.

Proposition 3.13 For any x′ ∈ X0, we have

Gν

(
x′;λ)= a+

ν

(
x′;λ), (3.11)

where a+
ν (x′;λ) is the previously described coefficient in the asymptotic expansion of

R(·, x′;λ) near p.

In other words, Gν(x
′;λ) is obtained by selecting in the resolvent kernel

R(x, x′;λ) some particular term in the asymptotic behavior x → p. Using

R(x′, x;λ) = R(x, x′;λ), there are similar statements when we fix x and let x′ tend
to p.

Proof Denote by �1 the Euclidean Laplace operator on C∞
0 (X \ (P ∪ {x′})). This

operator fits in the general theory described in Sect. 3 by considering that x′ actually
is the vertex of a cone of angle 2π . In particular, Green’s formula (3.1) is still valid,
provided we take into account log singularities at x′. The resolvent kernel R(·, x′;λ)

and Gν(·;λ) both belong to dom(�∗
1). The singularities of R are described by the

functions a+
ν near the conical points, and R has a log singularity near x′, whereas Gν

is smooth near x′ and its singular behavior near the conical points Gν is prescribed
by (3.10). Green’s formula thus yields:

〈(
�∗

1 − λ
)
R
(·, x′;λ),Gν(·λ)

〉− 〈
R
(·, x′;λ), (�∗

1 − λ
)
Gν

(
x′;λ)〉

= Gν

(
x′;λ)− a+

ν

(
x′;λ).

Since (�∗
1 − λ)R(·, x′;λ) = 0 = (�∗

1 − λ)Gν(x
′;λ), we obtain

Gν

(
x′;λ) = a+

ν

(
x′;λ).

We now use the fact that Gν(x;λ) is analytic for λ ∈ C\[0,∞) and real for real (and
negative) λ. Thus, by analytic continuation,

Gν

(
x′;λ)= Gν

(
x′, λ

)
. �
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4 The S-Matrix of E.s.c.s.

In this section we try to understand what kind of geometric information is encoded in
the S-matrix of a Euclidean surface with conical singularities. We begin by studying
the asymptotic behavior of S(λ) as λ goes to −∞.

4.1 S(−|λ|) for Large λ

It is a general fact that the behavior of the resolvent kernel when λ goes to −∞ is a
local quantity.

This is confirmed by the following lemma.

Lemma 4.1 When λ goes to ∞ then
[
S
(−|λ|)]

μν
= O

(|λ|−∞),

if μ and ν do not correspond to the same conical point.
When μ and ν correspond to the same conical point p of angle α, then we have

[
S
(−|λ|)]

μν
= [

Sα

(−|λ|)]
μν

+ O
(|λ|−∞),

where Sα denotes the S-matrix on the infinite cone of total angle α.
Moreover, both identities may be differentiated with respect to λ.

Proof We use the representation of the resolvent kernel using the heat kernel (which
we denote here by P (t, x, x′)):

R
(
x, x′;−|λ|)=

∫ ∞

0
exp

(−t |λ|)P
(
t, x, x′)dt. (4.1)

We now use a standard construction of a parametrix for the heat kernel (see [7],
for instance). We first enumerate the set of conical points writing P := {pi,1 ≤ pi ≤
M}. Then, for each pi we choose χ̃i and χi , two smooth cut-off functions such that
supp(χi) ⊂ {χ̃i = 1}; χi is identically 1 near p and X is isometric to a neighborhood
of the tip of the cone of angle θpi

on the support of χ̃i . We complete the collections
(χi)i≤M and (χ̃i)i≤M to (χi)i≤M̃

, (χ̃i )i≤M̃
in such a way that (χi)i≤M̃

is a partition

of unity, χ̃i is identically 1 on the support of χi and, for M < i ≤ M̃, X is isometric
to a neighborhood of the origin in R

2 on the support of χ̃i . We also set Pi to be the
heat kernel on the cone corresponding to pi if i ≤ M and on the plane otherwise and
define

P̃
(
t, x, x′)=

M̃∑

i=1

χ̃i (x)Pi

(
t, x, x′)χi(x).

Using Duhamel’s principle and the fact that Pi quickly decays away from the
diagonal (see (1.1) of [7]) yields that P̃ (t) − P (t) maps L2 into Hs for any s, and

∥∥P̃ (t) − P (t)
∥∥

L2→Hs = O
(
t∞
)



1510 L. Hillairet, A. Kokotov

when t goes to 0, so that P̃ is a parametrix for the heat kernel.
Inserting into (4.1) and integrating against fν we obtain

gν

(
x;−|λ|)= χ̃i(x)

∫ ∞

0

∫

X

Pi

(
t, x, x′)fν

(
x′;−|λ|)dS

(
x′)dt + rλ(x),

where the remainder rλ ∈ H 2 and ‖rλ‖H 2 = O(|λ|−∞) and the index i corresponds
to the conical point corresponding to ν. The first statement follows. The second one
also follows by remarking that Fν,fν , and �ν can also be seen as living on the cone,
and that the latter equation is also valid on the complete cone. Differentiating with
respect to λ amounts to replacing P by �F P , and we can use the same argument. �

Using Example 3.8, we obtain the following proposition as a corollary.

Proposition 4.2 When λ goes to ∞ we have

[
S
(−|λ|)]

μν
= O

(|λ|−∞) if μ �= ν,

[
S
(−|λ|)]

νν
= − �(1 − |ν|)

22|ν|�(1 + |ν|) · |λ||ν| + O
(|λ|−∞), if ν �= 0,

[
S
(−|λ|)]00 = 1

2
ln
(|λ|)− (

ln(2) − γ
)+ O

(|λ|−∞).

Remark 4.3 It would be interesting to study the asymptotic behavior of S(±i|λ|). It is
then expected to see contributions of periodic diffractive orbits (compare with [16]).

4.2 Explicit Formulas for S(0)

In this subsection we will show that for ν �= 0 the coefficient Sμν(λ) is continuous at
λ = 0 and may be expressed using standard objects of the Riemannian surface X.

Recall that, in the distinguished local parameter ζ near some conical point P the
asymptotic expansion was given in (3.4). It follows that we have

{
Fν(ζ, ζ ) ∼ Cνζ

−k k > 0,

Fν(ζ, ζ ) ∼ Cνζ
k

k < 0,

where, as usual, ν and k are related by the relation ν = 2π
θp

· k.
We first prove the following lemma.

Lemma 4.4 If ν �= 0 then Gν(·;λ) is continuous at λ = 0 and Gν(·;0) is a harmonic
L2 function on X such that

{
Gν(ζ, ζ ;0) = ζ−k + O(1) k > 0,

Gν(ζ, ζ ;0) = ζ
k + O(1) k < 0.
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Proof Recall that we have set Gν(·;λ) = Fν + gν(·;λ), where gν(·;λ) is the unique
solution to

(�F − λ)gν(·;λ) = −(�∗ − λ
)
Fν.

Since
∫
X
(�∗−λ)Fν dx = 0, the continuity at 0 follows from the fact that the ker(�F )

consists only of the constant function. By continuity we obtain that Gν(·;0) is a
solution to �∗Gν(·;0) = 0 and, therefore, Gν(·;0) is harmonic on X0. �

Remark 4.5 Let ζ denote the distinguished local parameter near a fixed p ∈ P . The
problems

{
�Uk = 0 on X \ P

Uk ∼ ζ−k + O(1), as ζ → 0
(4.2)

for 0 < k <
θp

2π
and

{
�Uk = 0 on X \ P

Uk ∼ ζ
k + O(1), as ζ → 0

(4.3)

for − θp

2π
< k < 0 have solutions only up to an additive constant. On the other hand,

the problem
{

�u = 0 on X \ P

u ∼ log r + O(1), as ζ → 0

doesn’t have a solution. Thus the behavior of the coefficients S0ν(λ) and Sμ0(λ) may
not even be properly defined for λ = 0. When writing S(0) we will implicitly as-
sume that only the coefficients Sμν with nonzero μ and ν are considered (see also
Remark 5.5).

In the next subsection we construct solutions to the problems (4.2), (4.3) since
they give the functions Gν(·; 0) from which the coefficients Sμν can be computed
(for nonzero μ and ν).

4.3 Special Solutions and an Explicit Expression for S(0)

Choose a canonical basis of cycles {aα, bα} on the Riemann surface X, and let
{vα}α=1,...,g be the corresponding basis of holomorphic normalized differentials. Let
B be the matrix of b-periods of X.

We have the following proposition.

Proposition 4.6 Fixing P a conical point and k ∈ N, there exist �k and �k such
that

(1) �k and �k are meromorphic differentials of the second kind on X with only one
pole of order k + 1 at P .
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(2) In the distinguished local parameter near P , they satisfy

⎧
⎪⎨

⎪⎩

�k(ζ ) = − k

ζ k+1 dζ + O(1)

�k(ζ ) = − ik

ζ k+1 dζ + O(1).

(4.4)

(3) All the a-periods and b-periods of �k(P, ·) and �k(P, ·) are purely imaginary.

Proof Let ω(·, ·) be the canonical meromorphic bidifferential on the Riemann surface
X (see [9], p. 3) for which the following asymptotic expansion holds:

ω(ζ(Q1), ζ(Q2))

dζ(Q1)dζ(Q2)
= 1

(ζ(Q1) − ζ(Q2))2
+ 1

6
SB

(
ζ(Q2)

)+ o(1)

as Q1 → Q2, where SB is the Bergman projective connection. Moreover, ω is nor-
malized in such a way that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∮

aα

ω(·, ζ )

dζ

∣∣∣∣
ζ=0

= 0

∮

bα

ω(·, ζ )

dζ

∣∣∣∣
ζ=0

= 2πi
vα(ζ )

dζ

∣∣∣∣
ζ=0

,

(4.5)

for α = 1, . . . , g.
Let (cα)α=1,...,g be coefficients to be chosen later, and consider the meromorphic

differential

−ω(·, ζ )

dζ

∣∣
∣∣
ζ=0

+
g∑

α=1

cαvα. (4.6)

We want to choose cα in (4.6) so that all the a-periods and b-periods of this dif-
ferential are purely imaginary. The vanishing of the real parts of all a-periods implies
that all the constants cα are purely imaginary. The vanishing of the real part of the
period over the cycle bβ then gives:

Re

(∮

bβ

∑
cαvα

)
= Re

(∮

bβ

ω(·, ζ )

dζ

∣
∣∣∣
ζ=0

)
.

Using the fact that the cα are known to be purely imaginary and the normalization of
ω recalled in (4.5), we obtain the following system of equations:

g∑

α=1

[ImB]βαcα = 2πiIm

(
vβ

dζ

∣∣∣∣
ζ=0

)
. (4.7)

Since Im (B) is invertible, this uniquely determines cα .
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In order to get �1 we apply the same method of searching coefficients cα so that
the meromorphic differential

−i
ω(·, ζ )

dζ
+

g∑

α=1

cαvα

has purely imaginary periods. The system of equations we obtain is similar to (4.7)
except that Im(

vβ

dζ
|ζ=0) is replaced by Re( vβ

dζ
|ζ=0). It still has a solution using the

same invertibility of Im(B).
To get �k and �k with an arbitrary k ≥ 1, we repeat the same construction, taking

the first term in (4.6) to be

(−1)k

(k − 1)!
[

d

dζ

]k−1
ω(·, ζ )

dζ

∣∣
∣∣
ζ=0

.

We will obtain an equation similar to (4.7) so that eventually, the existence result thus
follows from the existence of ω and the fact that the matrix Im (B) is invertible. �

This proposition gives the following corollary.

Corollary 4.7 Let �k and �k be defined by the preceding proposition. Then the
following formula defines a function fk which is harmonic in X \ {P }:

fk(Q) = Re

{∫ Q

P0

�k

}
− i Re

{∫ Q

P0

�k

}
. (4.8)

Moreover, in the distinguished local parameter near P , fk admits the following
asymptotic behavior:

fk(ζ ) = 1

ζ k
+ O(1).

Proof Since all the a-periods and b-periods of � and � are purely imaginary, fk is
indeed well defined on X. The remaining statements follow from the construction. �

By considering Cνfk or Cνfk we obtain the functions Gν(·;0) up to an additive
constant. This additive constant is harmless when computing the matrix elements
Sμν(0).

4.3.1 Examples

(1) A conical point of angle 2π < β ≤ 4π on a Euclidean surface of genus ≥ 1. In
this case one has n = 1.

Proposition 4.6 combined with the asymptotics of ω yield
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∫ ζ

P0

�1(P, ·) = 1

ζ
+ c0 +

[

−1

6
SB(ζ )

∣
∣∣∣
ζ=0

+ 2πi

g∑

α=1,β=1

(
(Im B)−1)

αβ
Im

{
vβ(ζ )

dζ

∣∣∣
∣
ζ=0

}
vα(ζ )

dζ

∣∣∣
∣
ζ=0

]

ζ

+ O
(
ζ 2) (4.9)

with some constant c0, and

∫ ζ

P0

�1(P, ·) = i

ζ
+ d0 +

[

− i

6
SB(ζ )

∣∣∣∣
ζ=0

+ 2πi

g∑

α=1,β=1

(
(Im B)−1)

αβ
Re

{
vβ(ζ )

dζ

∣∣∣∣
ζ=0

}
vα(ζ )

dζ

∣∣∣∣
ζ=0

]

ζ

+ O
(
ζ 2) (4.10)

with some constant d0.
Denoting the expressions in square brackets in (4.9) and (4.10) by A and B

respectively, one gets the asymptotics

f1(ζ, ζ ) = 1

ζ
+ const + A − iB

2
ζ + A − iB

2
ζ + O

(|ζ |2)

and, therefore,

Sp(0) =

⎛

⎜⎜
⎝

∗ ∗ ∗
∗ A−iB

2
A−iB

2

∗ A+iB
2

A+iB
2

⎞

⎟⎟
⎠ , (4.11)

where the index p means that we have written down only the coefficients of S(0)

that correspond to indices ν ∈ Np

(2) A Euclidean sphere with one 4π singularity and six π singularities. Consider the
surface of Example 2.1, i.e., the Riemann sphere with metric

|z|2|dz|2
∏6

k=1 |z − zk|
.

We consider the part of the S-matrix with non-zero indices μ and ν. We thus
only have to consider the asymptotic behavior near 0 and compute the coefficients
S 1

2
1
2
, S− 1

2 − 1
2
, S− 1

2
1
2
, and S 1

2 − 1
2
.

The distinguished local parameter ζ in a vicinity of the conical point z = 0 is
given by

ζ(z) =
(∫ z

0

w dw
√∏6

k=1(w − zk)

)1/2

.
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The special solution f1 is now not only harmonic, but even holomorphic in
CP 1 \ 0, and is nothing but the function A/z with some constant A.

One has
A

z
= 1

ζ
+ const + S 1

2
1
2
(0)ζ + O

(
ζ 2).

Therefore, A = dz
dζ

|ζ=0 and a simple calculation shows that

S 1
2

1
2
(0) = −1

6

z′′′(ζ )z′(ζ ) − 3
2 (z′′(ζ ))2

(z′(ζ )2

∣∣∣∣
ζ=0

= −1

6
{z, ζ }|ζ=0,

where {z, ζ } is the Schwarzian derivative. One also has S− 1
2 − 1

2
(0) = S 1

2
1
2
(0) and

S 1
2 − 1

2
(0) = S− 1

2
1
2
(0) = 0.

In the very symmetric case where the zk form a regular hexagon, the compu-
tation yields that z = c · ζ(1 + O(ζ 6)) so that S 1

2
1
2

and S− 1
2 − 1

2
also vanish.

4.4 S-Matrix as a Function on the Moduli Space of Holomorphic Differentials:
Variational Formulas

Let (X,ω) ∈ Hg(k1, . . . , kM) and let S(λ) be the S-matrix corresponding to a con-
ical point of the translation surface (X, |ω|2) (i.e., one of the zeros of the holomor-
phic one-form ω). Here we derive the variational formulas for S(λ) with respect to
Kontsevich–Zorich homological coordinates on Hg(k1, . . . , kM).

Proposition 4.8 Let z(p) = ∫ p
ω. Introduce the following (closed) (1-1)-form on X0:

�μν = [
Gμ(z;λ)

]
zz

Gν(z;λ)dz + [
Gμ(z;λ)

]
z

[
Gν(z;λ)

]
z
dz.

Then the variational formulas hold:

∂Sμν(λ)

∂Aα

= 2i

∮

bα

�μν; α = 1, . . . , g, (4.12)

∂Sμν(λ)

∂Bα

= −2i

∮

aα

�μν; α = 1, . . . , g, (4.13)

∂Sμν(λ)

∂zk

= 2i

∮

pk

�μν; k = 2, . . . ,M, (4.14)

where the integrals in (4.14) are taken over some small contours encircling conical
points pk .

Proof The method of proof closely follows [19]. We will prove only the variational
formulas with respect to coordinates Aα , since the other formulas can be established
similarly.

According to [19] (Proposition 2, p. 84) one has

∂AαR(x, y;λ) = 2i

∮

bα

R(x, z;λ)Rzz(y, z;λ)dz + Rz(x, z;λ)Rz(y, z;λ)dz. (4.15)
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(Here R(x, y;λ) stands for the resolvent kernel of the Friedrichs extension; one has
Rzz(x, z;λ) = λ

4 R(x, z;λ).) On the other hand, by the definition of gν we have

gν(x;λ) = −
∫∫

X

[
R(x, y;λ)(� − λ)Fν(y)

]
dy, (4.16)

and Lemma 7 on p. 88 of [19] reads as

∂Aα

∫∫

X

�(x, x;moduli)dx =
∫∫

X

∂Aα�(x, x,moduli)dx

+ i

2

∮

bα

�(x, x,moduli)dx. (4.17)

The cycle bα does not intersect the support of Fν , and the terms Fν and (�−λ)Fν

are moduli independent; therefore,

∂AαGν(x;λ) = ∂Aα (Fν + gν) = ∂Aαgν(x;λ).

Using (4.16) and (4.17), we obtain

∂AαGν(x;λ) = 2i

∫∫

X

dy
[
(� − λ)Fν(y)

] ∮

bα

{
R(x, z;λ)Rzz(y, z;λ)dz

+ Rz(x, z;λ)Rz(y, z;λ)dz
}

= 2i

∮

bα

R(x, z;λ)

[∫∫

X

λ

4
R(y, z;λ)(� − λ)Fν(y)dy

]
dz

+ 2i

∮

bα

Rz(x, z;λ)

[∫∫

X

Rz(y, z;λ)(� − λ)Fν(y)dy

]
dz

= 2i

∮

bα

Rzz(x, z;λ)gν(z;λ)dz + Rz(x, z;λ)
[
gν(z;λ)

]
z
dz

= 2i

∮

bα

Rzz(x, z;λ)Gν(z;λ)dz + Rz(x, z;λ)
[
Gν(z;λ)

]
z
dz.

We finally obtain

∂Aαgν(λ, x) = 2i

∮

bα

Rzz(x, z;λ)Gν(z;λ)dz + Rz(x, z;λ)
[
Gν(z;λ)

]
z
dz.

Using Proposition 3.13 and (3.10) to identify the behavior near the conical points of
the different terms, we obtain

∂AαSμν = 2i

∮

bα

[
a+
μ (z;λ)

]
zz

Gν(z;λ)dz + [
a+
μ (z;λ)

]
z

[
Gν(z;λ)

]
z
dz.

Using Proposition 3.13, this gives the result.
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5 Krein’s Formula and Relative Determinants

There are several ways of defining determinants of operators acting on an infinite-
dimensional space. We recall the following two basic constructions: first, a perturba-
tive determinant when the operator is a trace-class perturbation of the identity; and
second, zeta-regularization, which is used in particular for Laplacian-like operators.

Both these approaches can also be used to define relative determinants when com-
paring two operators H0 and H1 in which one is thought to be a perturbation of the
other. Krein’s formula is a classical tool in this setting and usually applies when the
difference f (H1)−f (H0) is trace-class for some simple function f . In that case it is
possible to define a relative perturbative determinant (see [28]). This approach applies
well to the case when H0 and H1 are different self-adjoint extensions of a symmet-
ric operator that has finite deficiency indices. Indeed, in that case the difference of
the resolvents is a finite-rank operator and, moreover, the perturbative determinant is
actually the determinant of a finite-dimensional matrix.

We will thus adapt these techniques to our setting. The method is clearly identified
in the literature (see [28] and also [5]), and the main task here consists of identifying
the perturbative determinant in terms of the boundary condition and the S-matrix.

Once this is done, we will use this determinant to define a zeta-regularization and
compare the determinants that are obtained this way.

Remark 5.1 We insist here that we will actually use the perturbative determinant to
show that zeta-regularization is possible and then to compare the two definitions of
determinants. In particular, all the issues that are relative to zeta-regularization may
be expressed using the perturbative determinant (when the latter can be defined).

5.1 Krein’s Formula and Perturbative Determinant

One convenient way of parameterizing the self-adjoint extensions of � is by using
two matrices P and Q in the following way (see [21]).

We first construct two vectors A± that collect the coefficients a±
ν . We organize

these coefficients so that the first np1 entries correspond to the first conical point p1,
then we put the data corresponding to the second conical points, and so on.

A Lagrangian subspace L in dom(�∗)/dom(�) can be parameterized by a system
of linear equations of the following form:

PA− + QA+ = 0,

where P and Q are square matrices satisfying rank(P,Q) is maximal and P ∗Q is
self-adjoint. We fix two such matrices and denote by �L the corresponding self-
adjoint extensions.

It is possible to find a basis in which the n × 2n matrix (P Q) has the following
block-decomposition ([21]):

(
P2 P3 Q1 0
0 P1 0 0

)
, (5.1)

in which P1 and Q1 are invertible and L := Q−1
1 P2 is self-adjoint.
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Definition 5.2 We will call an extension �L regular if functions in dom(�L) are not
allowed to have logarithmic singularities. Equivalently, �L is regular if and only if
for any u ∈ dom(�L), and any conical point p, the coefficient a−

p,0 of u vanishes.

The following observation (based on the classical Krein formula) is the key tech-
nical result of the present paper.

Proposition 5.3 For any λ ∈ C\(spec(�F )∪spec(�L)) the following identity holds:

Tr
(
(�L − λ)−1 − (�F − λ)−1)= −Tr

((
P + QS(λ)

)−1
QṠ(λ)

)
,

where the dot indicates derivation with respect to λ.

Proof Let λ be in the union of the resolvent sets of �F and �L, and let f be in L2.
We search a matrix X = [xμν] such that we have the following Krein formula (see,
e.g., [4] or [1], Theorem A.3)

(�L − λ)−1f = (�F − λ)−1(f ) +
∑

μ,ν

xμνGμ(·;λ)�ν

[
(�F − λ)−1(f )

]
. (5.2)

We denote by u = (�F − λ)−1(f ) and we compute the vectors A± of the right-
hand side

a−
μ =

∑

ν

xμν�ν(u),

a+
μ′ = �μ′(u) +

∑

μ,ν

xμν

[
S(λ)

]
μ′μ�ν(u).

Denoting by � the vector �ν(u) we thus have

A− = X�, A+ = (
I + S(λ)X

)
�.

Plugging into the self-adjoint condition, we obtain that the following relation is sat-
isfied.

[
PX + Q

(
I + S(λ)X

)] · � = 0.

Using the block decomposition (5.1), we see that

P + QS(λ) =
(

P2 + Q1S(λ) ∗
0 P1

)
.

Since λ is in both resolvent sets, � is arbitrary and the preceding system always has
a solution. We obtain that (P2 + Q1S(λ)) must be invertible and hence P + QS(λ).
Finally, we obtain

X = −(P + QS(λ)
)−1

Q.
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Denoting by �μν(λ) the (rank one) operator defined from H 2 into L2 by

�μν(λ)(u) = Gμ(·;λ)�ν(u),

(5.2) may be rewritten:

(�L − λ)−1 − (�F − λ)−1 =
∑

μ,ν

xμν�μν(λ) ◦ (�F − λ)−1.

Observe that the right-hand side is finite rank, so that we can trace this equation
and obtain

Tr
(
(�L − λ)−1 − (�F − λ)−1)=

∑

μ,ν

xμνTr
(
�μν(λ) ◦ (�F − λ)−1).

Using Lemma 5.4 below and Lemma 3.12, we obtain

Tr
(
(�L − λ)−1 − (�F − λ)−1) =

∑

μ,ν

xμν

〈
Gμ(·;λ),Gν(·;λ)

〉

=
∑

μν

xμν

[
Ṡ(λ)

]
νμ

= −Tr
((

P + QS(λ)
)−1

QṠ(λ)
)
. �

It remains to prove the following lemma.

Lemma 5.4 The trace of the rank one operator �μν(λ) ◦ (�F − λ)−1 is given by

Tr
(
�μν(λ) ◦ (�F − λ)−1)= 〈

Gμ(·;λ),Gν(·;λ)
〉
.

Proof Let en be an orthonormal basis of L2. Then

〈
�μν(λ) ◦ (�F − λ)−1en, en

〉 = 〈
Gμ(·;λ), en

〉 · �ν

(
(�F − λ)−1en

)

= 〈
Gμ(·;λ), en

〉 · 〈en,Gν(·;λ)
〉
.

Summing over n and using Parseval’s identity gives the lemma. �

We may now define D on the union of the resolvent sets of �F and �L by

D(λ) = det
(
P + QS(λ)

)
. (5.3)

Remark 5.5 When the extension is regular, the matrix P +QS(λ) doesn’t involve the
coefficients Sμν whenever μ or ν is 0 (because these are multiplied by a zero entry
of Q). Hence the matrix P + QS(0) makes perfect sense and can be computed using
the results of Sect. 4.2.
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The preceding proposition gives

Tr
(
(�L − λ)−1 − (�F − λ)−1)= −D′(λ)

D(λ)
. (5.4)

This implies that D′
D

extends to a meromorphic function with poles that correspond to
eigenvalues of �L and �F and with residues dim(ker(�L −λ))−dim(ker(�F −λ)).

Since D′
D

is the logarithmic derivative of D, it is convenient to give a name to
ln(D). We thus denote by � ⊂ C the set obtained by removing a downward vertical
cut starting at each eigenvalue of �F and �L, i.e.,

� = C \ {λ − it, λ ∈ spec(�F ) ∪ spec(�L), t ∈ (−∞,0]},

and, on �, we define the function ξ̃ by ξ̃ (λ) := − 1
2iπ

ln(det(P + QS(λ))).
Observe that on � we have, by definition,

D(λ) = exp
(−2iπξ̃ (λ)

)
. (5.5)

The function ξ̃ is intimately related to the spectral shift function ξ (see [13, 28]).
Although the latter is usually used in settings with continuous spectrum, it is possible
to define it even when H0 and H1 have pure point spectrum. In the latter case, it
follows from the definitions that ξ is the step-function: ξ(t) := N1(t) − N0(t), where
Ni is the counting function associated with Hi .

It follows from our definition of ξ̃ that the function ξ defined on R by

ξ(t) := − 1

2π
Arg

(
D(t)

)= Re ξ̃ (t)

is a step function with jumps located at the eigenvalues of �F and �L. Moreover,
the jumps are exactly the differences dim(ker(�L − λ)) − dim(ker(�F − λ)). We
thus obtain the spectral shift function of �F and �L (compare with [28] Theorem 1
p. 272).

In our setting, the Birman–Krein formula would be (5.5) (compare with [28]
p. 272) and would follow, in our case, from our definitions. In the next subsection we
will prove that, using D, one may define a determinant of �L via zeta-regularization
and then establish the relation

det
ζ

(�L − λ) = C0 · D(λ)det
ζ

(�F − λ), (5.6)

in which C0 is some constant that we will also determine.
In particular, we will now prove that D allows us to recover the “exotic” features

of the zeta function associated with �L. This unusual behavior has been extensively
studied in [17] in a setting very close to ours, and in [12] in greater generality. Our
main contribution here is the interpretation of D using S-matrix that, in some sense,
gives a geometrical interpretation to the “secular equation” method of [17].



Krein Formula and S-Matrix for Euclidean Surfaces with Conical 1521

5.2 Comparing Determinants

The procedure here is not as straightforward as usual because of unusual behavior
of the zeta function near s = 0. In particular, ζ(s,�L) will admit an analytic contin-
uation that is regular at 0 only if L is regular (though with possible unusual poles).
This unusual behavior has been extensively studied in the literature (see [12, 17, 22]);
from our point of view, it is linked with the asymptotic behavior of D(λ) for large
negative λ. We thus begin by deriving this asymptotic expansion.

5.2.1 D(λ) for Large Negative λ.

The analysis that follows is closely related to the one performed in [17]. This is
not surprising, since the asymptotic regime as λ goes to −∞ is local. In particular,
the function D(−|λ|) := det(P + QS(−|λ|)) on a cone has to be compared to the
function F(i

√|λ|) in [17].
We first use Proposition 4.2 and consider all possible sums of the exponents νi that

appear in this proposition. This gives us a collection of numbers that we order and
denote by α0 > α1 > · · · > αk > · · · . Expanding now the determinant, and ordering
the terms, we get

D(−|λ|) =
∑

finite

akl |λ|αk (ln |λ|)l + O
(|λ|−∞).

By definition, there are no logarithms in the expansion corresponding to a regular
self-adjoint extension; therefore, in that case, the expansion reads:

D(−|λ|) =
∑

finite

ak|λ|αk + O
(|λ|−∞).

We set lk to be the largest integer l such that |λ|αk (ln |λ|)l appears in the expansion,
and we set βk = α0 − αk . We have

D(−|λ|) = a0l0 |λ|α0(ln |λ|)l0
[

1 +
∑

l≥1

a0l (ln |λ|)−l +
∑

βk>0

l0∑

−lk

akl |λ|−βk (ln |λ|)l

+ O
(|λ|−∞)

]

.

We denote by F(λ) = [1 +∑
l≥1 a0l (ln |λ|)−l +∑

βk>0
∑lk−lk

akl |λ|−βk (ln |λ|)l +
O(|λ|−∞)].

Taking the logarithmic derivative, we obtain

−D′(−|λ|)
D(−|λ|) = 2iπξ̃ ′(−|λ|)= α0

|λ| + l0

|λ| ln |λ| + F ′(λ)

F (λ)
.

By inspection we find

F ′(λ)

F (λ)
=
{

O(|λ|−β1−1) regular case,

O(|λ|−1(ln |λ|)−2) otherwise.
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Lemma 5.6

(1) In the regular case, there exist three positive numbers α0, β1, and M such that
the estimate

∣∣∣∣2iπξ̃ ′(−|λ|) − α0

|λ|
∣∣∣∣≤ M|λ|−β1−1 (5.7)

holds for λ large enough.
(2) In the other cases, there exist two positive real numbers α0 and β1, a non-negative

integer l0, and a constant M such that the estimate
∣∣
∣∣2iπξ̃ ′(−|λ|) − α0

|λ| − l0

|λ| ln |λ|
∣∣
∣∣≤ M · |λ|−1(ln |λ|)−2 (5.8)

holds for |λ| large enough.

In the regular case, for any C > 0, define hC(s) for Re(s) large enough by

hC(s) = 2iπ

∫ ∞

C

λ−s ξ̃ ′(−|λ|)dλ − α0

s
exp

(−s ln(C)
)
. (5.9)

The estimates of the previous lemma imply the following corollary. We restrict to
the regular case, although similar statements are valid in the non-regular case (with
extra logarithmic singularities; see [17]).

Proposition 5.7 For a regular extension, the function hC extends to a holomorphic
function on {Re(s) ≥ −β1}.

Proof We have

∫ ∞

C

λ−s2iπξ̃ ′(−|λ|)dλ =
∫ ∞

C

λ−s

[
2iπξ̃ ′(−|λ|) − α0

λ

]
dλ

+
∫ ∞

C

λ−s α0

λ
dλ.

The second integral on the right-hand side is computed directly:

∫ ∞

C

λ−s α0

λ
dλ = α0

s
exp(−s lnC),

so that hC actually represents the first integral. Lemma 5.6 then gives that hC extends
to a holomorphic function on Re s > −β1. �

5.3 Zeta-Regularization

For any A and any C that is large enough, for any λ̃ ∈ � such that Re(λ̃) > A we
choose a cut cλ̃ ⊂ � that starts from −∞ + i0 and ends at λ̃. We may choose it in
such a way that it begins with the interval (−∞,−C].
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For any λ̃ and any s ∈ C, the function λ �→ (λ − λ̃)−s , which is well defined when
λ− λ̃ is a positive real number, extends to a holomorphic function on the complement
of the cut cλ̃. Moreover, when λ goes to the cut cλ̃ from above or from below, we have
the following jump condition:

lim
λ↓c

λ̃

exp(−iπs)(λ − λ̃)−s = lim
λ↑c

λ̃

exp(iπs)(λ − λ̃)−s .

For λ on cλ̃, we define (λ − λ̃)−s
0 to be this common limit.

Let A+ be any number greater than A that is neither an eigenvalue of �F nor of
�L. Define a contour γ that avoids cλ̃ and that consists of one part that encloses the
half-line {x ≥ A+} and then small circles that enclose the eigenvalues of �L and �F

that are smaller than A+.
For Re(s) > 1 we have

ζ(s,�L − λ̃) = 1

2iπ
Tr

(∫

γ

(λ − λ̃)−s(�L − λ)−1dλ

)
,

= 1

2iπ
Tr

(∫

c
λ̃,ε

(λ − λ̃)−s(�L − λ)−1dλ

)
,

in which cλ̃,ε denotes the contour obtained by following cλ̃ at a distance ε. The sec-
ond identity comes from the Cauchy integral formula since, when Re(s) > 1, the
contribution of a large circle centered at λ̃ tends to zero when the radius grows to
infinity.

The same formulas are true for �F , and using the fact that (�L − λ)−s and
(�F − λ)−s are trace class for Re s > 1, we can exchange the contour integration
and the trace operation to obtain

ζ(s,�L − λ̃)−ζ(s,�F − λ̃) = 1

2iπ

∫

c
λ̃,ε

(λ− λ̃)−sTr
(
(�L −λ)−1 − (�F −λ)−1)dλ.

Using Proposition 5.3 and the definition of ξ̃ , we obtain

ζ(s,�L − λ̃) − ζ(s,�F − λ̃) =
∫

cλ,ε

(λ − λ̃)−s ξ̃ ′(λ)dλ.

We rewrite the right-hand side in the following form: ζ1(s) + ζ2(s) where ζ1 cor-
responds to the part of the contour cλ,ε that is in the half-plane {Reλ ≤ −C}, and ζ2
is the remaining part of that contour.

The function ζ2 extends to an entire function of s, and for Re(s) < 1 we may let ε

go to 0, giving

∀s, Re(s) < 1, ζ2(s) = 2i sin(πs)

∫ λ̃

−C

(λ − λ̃)−s
0 ξ̃ ′(λ)dλ,

where the integral is along the part of the cut cλ̃ that belongs to the half-plane
{Re(λ) > −C}.
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For ζ1 we may first let ε go to 0 and obtain:

ζ1(s) = 2i sin(πs)

∫ −C

−∞
(λ − λ̃)−s

0 ξ̃ ′(λ)dλ.

We make a further reduction by using the following technical lemma.

Lemma 5.8 On C ×{|z| < 1}, we define ρ(s, z) = (1 − z)−s − 1. For any r < 1, and
any R > 0, the following holds for any |z| ≤ r , and any |s| ≤ R:

∣
∣ρ(s, z)

∣
∣≤ exp( Rr

1−r
)

1 − r
· |s| · |z|. (5.10)

Proof We start from

ρ(s, z) =
∑

k≥1

(−s)k[ln(1 − z)]k
k! .

By integration we have | ln(1 − z)| ≤ 1
1−r

|z| so that

|ρ(s, z)| ≤ exp

( |s||z|
1 − r

)
− 1 =

∫ |s||z|
1−r

0
exp(v) dv.

The claim then follows. �

For Re(λ) ≤ −C, there exists some r < 1 such that | λ̃
λ
| ≤ r . We can thus write

(λ − λ̃)−s = λ−s

(
1 + ρ

(
s,

λ̃

λ

))

for any λ such that Re(λ) ≤ −C and λ /∈ (−∞,−C).
Fix some R. For s such that Re(s) > 0 and |s| ≤ R, using the bound in Lemma 5.8

we may let ε go to zero and write

ζ1(s) = 2i sin(πs)

∫ −C

−∞
|λ|−s ξ̃ ′(λ) dλ + 2i sin(πs)R̃C(s, λ̃)

where

R̃C(s, λ̃) =
∫ −C

−∞
|λ|−s ξ̃ ′(λ)ρ

(
s,

λ̃

λ

)
dλ.

Using Lemma 5.8 and Lemma 5.6 we find that, for any extension (regular or not)
R̃C(·, λ) can be analytically continued to Re(s) > −1, and that R̃C(0) = 0.

Adding up ζ1 and ζ2 we obtain the following proposition.

Proposition 5.9 For any extension, the function RC(s, λ̃) which is defined for s large
by

RC(s, λ̃) = ζ(s,�L − λ̃) − ζ(s,�F − λ̃) − 2i sin(πs)

∫ −C

−∞
|λ|−s ξ̃ ′(λ) dλ − ζ2(s)
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can be analytically continued to Re(s) > −1, and RC(s, λ̃) vanishes at least at sec-
ond order at s = 0.

Proof By inspection and using the definitions of the different functions that appear
in the expression of RC , we find that

RC(s, λ̃) = 2i sin(πs)R̃C(s, λ̃).

Using the bounds given by Lemmas 5.6 and 5.8, we find a constant C̃ such that

∀λ < −C,

∣∣∣∣|λ|−s ξ̃ ′(λ)ρ

(
s,

λ̃

λ

)∣∣∣∣≤ C̃|s| · |λ|−Re(s)−2,

where C̃ depends on C, λ̃ and is uniform for |s| ≤ R. The claim follows. �

In particular, in the regular case, we obtain the following corollary (compare
with [23]).

Corollary 5.10 If L defines a regular extension, then (s − 1)ζ(s,�L − λ̃) extends to
a holomorphic function on Re(s) > −β1.

Proof The zeta-regularization of the Friedrichs extension is well known and well
studied, starting from the small-time asymptotics of the heat kernel (obtained, for
instance, from [7]). The function (s −1)ζ(�F − λ̃) is thus known to extend holomor-
phically to C (see [2, 3, 17, 19]). Moreover, the preceding proposition yields that

(s − 1)ζ(s,�L − λ̃) = (s − 1) ·
[
ζ(s,�F − λ̃) + sin(πs)

π

(
hC(s)

+ α0

s
exp(−s lnC)

)
+ ζ2(s) + RC(s, λ̃)

]
.

The statement thus follows by examining the analytic continuation of each indi-
vidual term. �

Remark 5.11 By evaluating everything at s = 0 we obtain

ζ(0,�L − λ̃) = ζ(0,�F − λ̃) + α0.

In the regular case, we can thus define the regularized zeta determinant by the
usual formula

det
ζ

(�L − λ̃) = exp
(−ζ ′(0,�L − λ̃)

)
,

and we obtain the following theorem.

Theorem 2 Let L define a regular extension and set � to be

� = lim
λ→∞ ln

(
D
(−|λ|))− α0 ln

(−|λ|). (5.11)
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Then, for any λ̃ ∈ � we have

det
ζ

(�L − λ̃) = e−� · D(λ̃) · detζ (�F − λ̃). (5.12)

Proof According to the preceding proposition, we have

ζ ′(0,�L − λ̃) − ζ ′(0,�F − λ̃) = ζ ′
2(0) + hC(0) − α0 ln(C).

We compute

ζ ′
2(0) = 2iπ

[
ξ̃ (λ̃) − ξ̃ (−C)

]
.

Combining the two, we find

ζ ′(0,�L − λ̃) − ζ ′(0,�F − λ̃) = 2iπξ̃ (λ̃) − 2iπξ̃ (−C) + hC(0) − α0 ln(C)

= 2iπξ̃ (λ̃) + ln
(
D(−C)

)− α0 ln(C) + hC(0).

This implies the result with � replaced by the quantity ln(D(−C)) − α0 ln(C) +
hC(0) (which proves in particular that the latter doesn’t depend on C large enough).
When we let C go to infinity, on the one hand ln(D(−C)) − α0 ln(C) goes to �, and
on the other hand, since

hC(0) =
∫ ∞

C

(
2iπξ̃ ′(−|λ|) − α0

λ

)
dλ

and the function inside the integral is L1, hC(0) goes to 0. This finishes proving the
theorem. �

Remark 5.12 As soon as hC allows the definition of the relative zeta determinant of
�L − λ̃ and �F − λ̃, then, using Theorem 2 and differentiating with respect to λ, we
recover a well-known fact of this theory:

∂λ̃

(
ln det(�L − λ̃) − ln det(�F − λ̃)

)= 2iπξ̃ ′(λ̃)

(compare with [6, 10, 15]).

Remark 5.13 For non-regular extensions, it is still possible to analytically continue ζ

to Re s > 0 and to define a zeta-regularized determinant by picking some coefficient
in the asymptotic expansion of ζ(s,�L − λ̃) near 0 (see [17]). Note, however, that
the limit λ̃ → 0 will be problematic.

5.4 Proof of Theorem 1

In order to get the theorem of the Introduction, we now let λ̃ go to 0. We thus modify
the zeta-regularized determinant in order to exclude the eigenvalue 0. Define by δL

(resp., δF ) the dimensions of ker(�L) (resp., ker(�F )). Equation (5.4) implies that 0
is a pole of D′

D
with residue d := δL − δF so that we can define D∗(0):

D∗(0) := lim
λ→0

D(λ)(−λ)−(δL−δF ).
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On the other hand, we define the modified zeta function by

ζ ∗(s,�F − λ̃) = ζ(s,�F − λ̃) − δF (−λ̃)−s

and the corresponding modified determinant. �

Definition 5.14 Let L define a regular extension (or L = F ); the modified zeta de-
terminant of �L is defined by

∗
det
ζ

(�L) = lim
λ̃→0

(−λ̃)−δL det
ζ

(�L − λ̃).

Using this definition for �L and �F , and plugging into (5.12), the powers of −λ̃

cancel out and we may let λ̃ go to zero. We thus obtain the theorem in the Introduction
(Theorem 1).

When d = 0, the prefactor D∗(0) may be computed using the method of Sect. 4.3.
When d > 0, then this method has to be refined to compute more terms in the Taylor
expansion of S(λ) at λ = 0. In the following example, we will pay special attention
to addressing the question of the kernel of P + QS(0).

5.5 On the Euclidean Sphere with One 4π and Six π Singularities

We consider the Euclidean sphere with six π singularities and one 4π conical point.
We define

A± =

⎛

⎜⎜⎜
⎝

a±
0

a±
− 1

2

a±
+ 1

2

Ã±

⎞

⎟⎟⎟
⎠

,

where a±
i , i = − 1

2 , 0, 1
2 correspond to the 4π singularity and Ã± are the coefficients

corresponding to the remaining six π singularities. Recall that for each of the latter
there are only two coefficients a±

0 .
A regular extension thus relates only the coefficients a±

± 1
2
.

We define Pθ and Qθ by

Pθ :=
⎛

⎝
1 0 0
0 cos θI2 0
0 0 I

⎞

⎠ , Qθ :=
⎛

⎝
0 0 0
0 sin θI2 0
0 0 0

⎞

⎠ .

This choice defines a regular self-adjoint extension (which is, moreover, invariant
under complex conjugation). We have

D(λ) = det
(
P + QS(λ)

)= det
(
cos θI2 + sin θS̃(λ)

)
,

where S̃ is the 2 × 2 matrix obtained from S by erasing the first row and column
(which correspond to a±

0 ) and all the rows and columns corresponding to Ã±.
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According to Proposition 4.2, when θ �= 0,π , the asymptotic expansion of D is
given by

lnD
(−|λ|) = 2|ν| ln

(|λ|)+ ln

([
�(1 − |ν|)

22|ν|�(1 + |ν|) sin θ

]2)
+ O(1),

= ln
(|λ|)+ ln[sin θ ]2 + O(1),

since |ν| = 1
2 .

Finally, we obtain that, for any θ �= 0,π such that −cotan(θ) isn’t an eigenvalue
of S̃(0), the following holds:

∗
det
ζ

(�L) = det(cos θI2 + sin θS̃(0))

sin2 θ
· det∗ζ (�F ).
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