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Abstract. Using the loop equations we find an explicit expression for genus 1 correction in
hermitian two-matrix model in terms of holomorphic objects associated to spectral curve
arising in large N limit. Our result generalises known expression for F 1 in hermitian one-
matrix model. We discuss the relationship between F 1, Bergman tau-function on Hur-
witz spaces, G-function of Frobenius manifolds and determinant of Laplacian over spectral
curve.
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In this Letter, we derive an explicit formula for the 1/N2 correction to free energy
F of hermitian two-matrix model:

e−N2F :=
∫

dM1dM2e−N tr{V1(M1)+V2(M2)−M1M2}. (1)

It is hard to overestimate the interest to random matrix models in modern
physics and mathematics; we just mention their appearance in statistical phys-
ics, condensed matter and 2d quantum gravity (see e.g. [1]) . The expansion F =∑∞

G=0 N−2GFG (N is the matrix size) in hermitian matrix models is one of the
cornerstones of the theory, due to its clear physical interpretation as topological
expansion of the functional integral, which appears in N → ∞ limit; in statisti-
cal physics the term FG plays the role of free energy for statistical physics model
on genus G Riemann surface. From the whole zoo if the random matrices one
of the simplest is the hermitian one-matrix model with partition function e−N2F =∫

dMe−N trV (M) (V is a polynomial), which can be used as testing ground for the
methods applied in more general situations of two- and multi-matrix models. The
most rigorous way to compute the 1/N2 expansion for both one-matrix and two-
matrix models is based on the loop equations. The loop equations follow from
the reparametrization invariance of matrix integrals; for one-matrix case the loop
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equations were used to compute F 1 (see [2]). Later the loop equations were writ-
ten down for the case of two-matrix model [3,4] and F 1 was found for the case
when the spectral curve has genus zero and one [4]; for arbitrary genus of spectral
curve of two-matrix model only the leading term F 0 is known (see [5]).

Let us write down polynomials V1 and V2 in the form V1(x)=∑d1+1
k=1

uk

k
xk and

V2(y) = ∑d2+1
k=1

vk

k
yk. It is sometimes convenient to think of V1 and V2 as infinite

formal power expansions: V1(x)=∑∞
k=1

uk

k
xk, V2(y)=∑∞

k=1
vk

k
yk, where coefficients

uk vanish for k � d1 +2, and vk vanish for k � d2 +2. According to this point of
view the operators of differentiation with respect to coefficients of V1 and V2 have
the following meaning (see [5]):

δ

δV1(x)

∣∣∣∣
x

:=
{ ∞∑

k=1

x−k−1k∂uk

}∣∣∣∣∣
uk=0,k �d1+2

,

(2)
δ

δV2(y)

∣∣∣∣
y

:=
{ ∞∑

k=1

y−k−1k∂vk

}∣∣∣∣∣
vk=0,k �d1+2

.

As it was discussed in detail in [5], (3) is a formal notation which makes sense
only order by order in the infinite power series expansion; it allows to write an
infinite number of equations at once. Consider the resolvents W(x) = 1

N

〈
tr 1

x−M1

〉

and W̃(y)= 1
N

〈
tr 1

y−M2

〉
. The free energy of two-matrix model (1) satisfies the fol-

lowing equations with respect to coefficients of polynomials V1 and V2:

δF

δV1(x)
=W(x),

δF

δV2(y)
=W̃(y). (3)

The equations (3) were solved in [5] in the zeroth order assuming the finite-gap
structure of distribution of eigenvalues of M1 (and, a posteriori, also of M2) as
N →∞. Here we find the next coefficient F 1, using the loop equations. The spec-
tral curve L is defined by the following equation, which arises in the zeroth order
approximation:

E0(x, y) := (V1
′(x)−y)(V2

′(y)−x)−P0(x, y)+1=0 (4)

where the polynomial of two variables P0(x, y) is the zeroth order term in 1/N2

expansion of the polynomial

P(x, y) := 1
N

〈
tr

V1
′(x)−V1

′(M1)

x −M1

V2
′(y)−V2

′(M2)

y −M2

〉
; (5)

the point P ∈ L of the curve is the pair of complex numbers (x, y) satisfying
(4) (on the “physical” sheet the equation of spectral curve (4) defines an implicit
function y(x), which gives the zeroth order approximation to V2

′(x)−W(x)). The
spectral curve (4) comes together with two meromorphic functions f (P ) = x and
g(P ) = y, which project it down to x and y-planes, respectively. These functions
have poles only at two points of L, called ∞f and ∞g: at ∞f function f (P )
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has simple pole, and function g(P ) – pole of order d1 with singular part equal to
V1

′(f (P )). At ∞g the function g(P ) has simple pole, and function f (P ) – pole
of order d2 with singular part equal to V2

′(g(P )). In addition, in our normaliza-
tion of partition function (1) we have the asymptotics W(x) ∼x→∞ 1/x + · · · and
W̃(y)∼y→∞ 1/y +· · · , which imply [5] Res∞f

g df = 1 and Res∞gf dg = 1, respec-
tively. Therefore, one gets the moduli space M of triples (L, f, g), where functions
f and g have this pole structure. The natural coordinates on this moduli space are
coefficients of polynomials V1 and V2 and g numbers, called “filling fractions” εα =

1
2πi

∮
aα

g df , where (aα, bα) is some basis of canonical cycles on L. The additional
constraints which should be imposed a posteriori to make the “filling fractions”
dependent on coefficients of polynomials V1 and V2 are (according to one-matrix
model experience, these conditions correspond to non-tunneling between different
intervals of eigenvalues support):

∮
ba

g df = 0. Denote the zeros of differential df

by P1, . . . , Pm1 (m1 =d2 +2g +1) (these points play the role of ramification points
if we realize L as branched covering by function f (P )); their projections on x-
plane are the branch points, which we denote we denote by λj :=f (Pj ) . The zeros
of the differential dg (the ramification points if we consider L as covering defined
by function g(P )) we denote by Q1, . . . ,Qm2 (m2 = d1 + 2g + 1); there projections
on y-plane (the branch points) we denote by µj := g(Qj ). We shall assume that
our potentials V1 and V2 are generic i.e. all zeros of differentials df and dg are
simple, and none of the zeros of df coincides with a zero of dg. It is well-known
(see for instance [5]) how to express all standard algebro-geometrical objects on L
in terms of the previous data. In particular, the canonical meromorphic bidifferen-
tial B(P,Q)=dP dQ ln E(P,Q) (E(P,Q) is the prime-form) can be represented as
follows:

B(P,Q)= δg(P )

δV1(f (Q))

∣∣∣
f (Q)

df (P )df (Q) (6)

This bidifferential has the following behaviour near diagonal P → Q: B(P,Q) =
{(z(P ) − z(Q))−2 + 1

6SB(P ) + o(1)}dz(P )dz(Q), where z(P ) is some local coordi-
nate; SB(P ) is the Bergman projective connection . Consider also the four-differ-
ential D(P,Q) = dP d3

Q ln E(P,Q), which has on the diagonal the pole of 4th
degree: D(P,Q) = {6(z(P ) − z(Q))−4 + O(1)}dz(P )(dz(Q))3. From B(P,Q) and
D(P,Q) it is easy to construct meromorphic normalized (all a-periods vanish)
1-forms on L with single pole; in particular, if the pole coincides with ramifica-
tion point Pk, the natural local parameter near Pk is xk(P ) = √

f (P )−λk; then
B(P,Pk) := B(P,Q)

dxk(Q)

∣∣∣
Q=Pk

and D(P,Pk) := D(P,Q)

(dxk(Q))3

∣∣∣
Q=Pk

are meromorphic normal-

ized 1-forms on L with single pole at Pk and the following singular parts:

B(P,Pk)=
{

1
[xk(P )]2

+ 1
6
SB(Pk)+o(1)

}
dxk(P );

(7)
D(P,Pk)=

{
6

[xk(P )]4
+O(1)

}
dxk(P )
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as P → Pk, where SB(Pk) is the Bergman projective connection computed at the
branch point Pk with respect to the local parameter xk(P ).

Equations (3) in order 1/N2 look as follows (we write only equations with
respect to V1):

δF 1

δV1(f (P ))
=−Y 1(P ) (8)

where the Y 1 is the (taken with minus sign) 1/N2 contribution to the resolvent W .
The function Y 1 can be computed using the loop equations [4] and the “normali-
zation conditions”∮

aα

Y 1(P )df (P )=0 (9)

over all basic a-cycles (these conditions mean that the “filling fractions” do not
have the 1/N2 correction). We introduce also the polynomial

E(x, y) := (V1(x)−y)(V2(y)−x)−P(x, y)+1, (10)

the function U(x, y), which is a polynomial in y and rational function in x:

U(x, y) := 1
N

〈
tr

1
x −M1

V2
′(y)−V2

′(M2)

y −M2

〉
, (11)

and rational function U(x, y, z):

U(x, y, z) :=δU(x, y)

δV1(z)
=

〈
tr

1
x −M1

V2
′(y)−V2

′(M2)

y −M2
tr

1
z−M1

〉
−N2U(x, y)W(z).

(12)

Then the loop equation looks as follows:

U(x, y)=x −V2
′(y)+ E(x, y)

y −Y (x)
− 1

N2

U(x, y, x)

y −Y (x)
, (13)

where Y (x) := V1
′(x) − W(x); it arises as a corollary of reparametrization invari-

ance of the matrix integral (1) [4]. To use the loop equation effectively we need
to consider the 1/N2 expansion of all of their ingredients. In this way we get the
following expression for Y 1:

Y 1(P )df (P )= P1(f (P ), g(P ))df (P )

E0
y (f (P ), g(P ))

+
∑

Q�=P :f (Q)=f (P )

B(P,Q)

df (Q)

1
g(P )−g(Q)

,

(14)

where E0
y (x, y) means partial derivative with respect to the second argument. All

ingredients of (14) arise already in the leading term, except P1. From (5) we see
that P(x, y) is a polynomial of degree d1 − 1 with respect to x and d2 − 1 with
respect to y; moreover, the coefficient in front of xd1−1yd2−1 does not have 1/N2
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correction. Now, assuming that L is a non-singular algebraic curve (i.e. it has the
“maximal” genus equal d1d2 − 1), we can claim that the differential df vanishes
only at the branch points, where E0

y (f (P ), g(P ))=0. Thus we can conclude that if
the spectral curve L is non-singular, the one-form Y 1(P )df (P ) is non-singular on
L outside of the branch points Pm, where it has poles of order 4. Moreover, the
first term in (14) is non-singular on L (the first order zeros of E0

y at the branch
points are cancelled by first order zeros of df (P ) at these points). If the spec-
tral curve is singular i.e. the genus of L is smaller than the maximal genus, the
non-singularity of Y 1(P )df (P ) outside of the branch points is suggested by phys-
ical consideration: since at the double points one does not have any eigenvalues of
matrices M1 and M2, there is no physical reason to expect that in large N limit the
resolvents are singular at these points (similar assumption is made in one-matrix
model case, too [2]).

The form of singular parts at Pm allows to determine Y 1(P )df (P ) completely in
terms of differentials B(P,Pk) and D(P,Pk) if we take into account the absence of
1/N2 correction to the “filling fractions” (9); the result looks as follows:

Y (1)(P )df (P )=
m1∑
k=1

{
− 1

96g′(Pk)
D(P,Pk)+

[
g′′′(Pk)

96g′2(Pk)
− SB(Pk)

24g′(Pk)

]
B(P,Pk)

}

(15)

Then the solution of (8), (15), which is symmetric with respect to the projection
change (and, therefore, satisfies also equations (3) with respect to V2), looks as
follows:

F 1 = 1
24

ln

{
τ 12
f (vd2+1)

1− 1
d2

m1∏
k=1

dg(Pk)

}
+ d2 +3

24
ln d2 (16)

where τf is the so-called Bergman tau-function on Hurwitz space [7], which satis-
fies the following system of equations with respect to the branch points λk:

∂

∂λk

ln τf =− 1
12

SB(Pk) ; (17)

In derivation of (15) we have used the following variational formulas, which can
be easily proved in analogy to Rauch variational formulas:

− δλk

δV1(f (P ))
g′(Pk)df (P )=B(P,Pk), (18)

δ{g′(Pk)}
δV1(f (P ))

∣∣∣∣
f (P )

df (P )= 1
4

{
D(P,Pk)− g′′′(Pk)

g′(Pk)
B(P,Pk)

}
(19)

The Bergman tau-function (17) appears in many important problems: it coin-
cides with isomonodromic tau-function of Hurwitz Frobenius manifolds [6], and
gives the main contribution to G-function (solution of Getzler equation) of
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these Frobenius manifolds; it gives the most non-trivial term in isomonodromic
tau-function of Riemann–Hilbert problem with quasi-permutation monodromies.
Finally, its modulus square essentially coincides with determinants of Laplace
operator in metrics with conical singularities over Riemann surfaces [7]. The
solution of the system (17) looks as follows [7]. Introduce the divisor (df ) =
−2∞f −(d2 +1)∞g +∑m1

k=1 Pk :=∑m1+2
k=1 rkDk. Choose some initial point P ∈ L̂ and

introduce corresponding vector of Riemann constants KP and Abel map Aα(Q)=∫ Q

P
wα (wα form the basis of normalized holomorphic 1-forms on L). Since some

points of divisor (df ) have multiplicity 1, we can always choose the fundamental
cell L̂ of the universal covering of L in such a way that A((df ))=−2KP (for an
arbitrary choice of fundamental domain these two vectors coincide only up to an
integer combination of periods of holomorphic differentials), where the Abel map
is computed along the path which does not intersect the boundary of L̂. The main
ingredient of the Bergman tau-function is the following holomorphic multivalued
(1 − g)g/2-differential C(P ) (the higher genus analog of Dedekind eta-function)
on L:

C(P ) := 1
W(P )

g∑
α1,...,αg=1

∂g�(KP )

∂zα1 . . .∂zαg

wα1(P ) . . .wαg (P ). (20)

where W(P ) :=det1�α,β �g||w(α−1)
β (P )|| denotes the Wronskian determinant of ho-

lomorphic differentials at point P ; KP is the vector of Riemann constants with
basepoint P ; � is the g-dimensional theta-function built from matrix of b-periods
of the curve L. Introduce the quantity Q defined by

Q= [df (P )]
g−1

2 C(P )

m2+2∏
k=1

[E(P,Dk)]
(1−g)rk

2 ; (21)

which is independent of the point P ∈L. Then the Bergman tau-function (17) of
Hurwitz space is given by the following expression [7]:

τf =Q2/3
m2+2∏

k,l=1 k<l

[E(Dk,Dl)]
rk rl

6 ; (22)

together with (16) this gives the answer for 1/N2 correction in two-matrix model.
If τf and τg are Bergman tau-functions (17) corresponding to divisors (df ) and
(dg), respectively, then

(
τf

τg

)12

=C
(ud1+1)

1− 1
d1

(vd2+1)
1− 1

d2

∏
k df (Qk)∏
k dg(Pk)

(23)

where C =d
d1+3
1 /d

d2+3
2 is a constant independent of moduli parameters. Using the

transformation (23) of the Bergman tau-function under projection change, we find
that the solution expression (16) for F 1 satisfies also the necessary equations with
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respect to V2. This could be considered as a confirmation of consistency of our
computation. Derivatives of function F 1 (16) with respect to the filling fractions
look as follows:

∂F 1

∂εα

=−
∮

bα

Y 1(P )df (P ) ; (24)

these equations are 1/N2 counterparts of Seiberg-Witten type equations for F 0

(see for example [4,5,8]).
Genus zero (“one-cut”) case. For genus zero the expression for the Bergman

tau-function (22) can be rewritten in terms of the uniformization map z(P ) of the
Riemann surface L to the Riemann sphere, satisfying the condition z(P )= l +O(1)

as P →∞f . The formula for τf looks as follows (see (3.32), (4.5) in [15]):

τ 12
f = (vd2+1)

1+1/d2

d2+1∏
k=1

dxk

dz
(Pk).

This expression can be derived from (22) using the formula for the prime-
form on L obtained as pull-back of the prime-form on the Riemann sphere:
E(P,Q) = z(P )−z(Q)√

dz(P )
√

dz(Q)
. Substituting this formula into (16) and using the chain

rule dg
dxk

(Pk)
dxk

dz
(Pk)= dg

dz
(Pk), we rewrite (16) as follows:

F 1 = 1
24

ln


v2

d2+1

d2+1∏
k=1

dg

dz
(Pk)


+C

where C is a constant, in agreement with the formula previously obtained in [4].
Elliptic spectral curve (“two-cut” case). Denote the period of the spectral curve

L by σ . The Bergman tau-function (22) for elliptic covering with multiplicities of
points at infinity equal to 1 and d2 can be represented as follows ([15], (3.35)):

τ 12
f =η24(σ )

(
w

d(f −1)
(∞f )

)2 (
w

d(f −1/d2)
(∞g)

)d2+1 d2+3∏
k=1

dxk

w
(Pk) (25)

where η(σ )= [ϑ ′
1(0, σ )]1/3 is the Dedekind eta-function; w is an arbitrary holomor-

phic one-form on L (it is easy to see that (25) remains invariant if w is multiplied
by an arbitrary constant). For simplicity we can normalize w such that at ∞g we
get w(P )= d(f −1/d2(P ))[1 + o(1)]. Under this normalization we get the following
formula for F 1:

F 1 = ln η(σ )+ 1
24

ln


(vd2+1)

1+1/d2

(
w

d(f −1)
(∞f )

)2 d2+3∏
k=1

dg

w
(Pk)


+C, (26)

which is new; this function looks different (although is, in fact, the same) from the
expression previously obtained in [4]. The expression obtained in [4] can be derived
by straightforward specialization of the formula (16) to genus 1 case using the
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following expression for the prime-form in genus one: E(P,Q)= ϑ ′
1(z(P )−z(Q))

ϑ ′
1(0)

√
dz(P )

√
dz(Q)

,

where z(P ) is the uniformization map of the curve L to the torus with periods 1
and σ (in the elliptic case the differential C(P ) does not depend on P and equals
ϑ ′

1(0)).
One-matrix model. If potential V2 is quadratic, integration with respect to M2

in (1) can be performed explicitly, and the free energy (16) gives rise to the free
energy of one-matrix model. The spectral curve L in this case becomes hyperellip-
tic, and the formula (16) gives, using the expression for τf obtained in [9]:

F 1 = 1
24

ln


�3 (det A)12

2g+2∏
k=1

g′(λk)


 (27)

where λk, k =1, . . . ,2g +2 are branch points of L; � is their Wronskian determi-
nant; A is the matrix of a-periods of non-normalized holomorphic differentials on
L; this agrees with previous results [2].

F 1, isomonodromic tau-function and G-function of Frobenius manifolds. The genus
1 correction to free energy in topological field theories is given by so-called G-
function, which for an arbitrary m-dimensional Frobenius manifold related to
Hurwitz space looks as follows [6,7,10]: exp{G}=τ

−1/2
f

∏m
k=1{res|Pk

ϕ2

df
}−1/48, where

τf is the Bergman tau-function, ϕ is an “admissible” one-form on underlying
Riemann surface. If, trying to build an analogy with our formula (16) for F 1, we
formally choose φ(P )= dg(P ), the formula for G-function coincides with (16) up
to small details like sign, additive constant, and the highest coefficient of polyno-
mial V2. However, the differential dg is not admissible, and, therefore, does not
really correspond to any Frobenius manifold; therefore, the true origin of his anal-
ogy is still unclear at the moment.

F 1 and determinant of Laplace operator. Existence of close relationship between
F 1 and determinant of Laplace operator was suggested by several authors (see
e.g. [11] for hermitial one-matrix model, [4] for hermitian two-matrix model and,
finally, [14] for normal two-matrix model with simply-connected support of eigen-
values). After an appropriate regularization the (formal) determinant of Laplace
operator �f over L in the singular metric |df (P )|2 is given by the expression [13]
det �f =C A {det �B}|τf |2, where A is a regularized area of L, B is the matrix of
b-periods of L, C is a constant. In the “physical” case of real coefficients of V1

and V2 and real filling fractions the empirical expression for ln{det �f } differs from
our expression (16) by several explicit terms. Therefore, the relationship between
hermitian and normal two-matrix models on the level of F 1 seems to be not as
straightforward as on the level of functions F 0 [5,14].
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