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ON THE ASYMPTOTICS OF SOLUTIONS
TO THE NEUMANN PROBLEM FOR HYPERBOLIC SYSTEMS

IN DOMAINS WITH CONICAL POINTS

A. KOKOTOV AND B. PLAMENEVSKĬI

Abstract. Hyperbolic systems of second-order differential equations are considered
in a domain with conical points at the boundary; in particular, the equations of
elastodynamics are discussed. The asymptotics of solutions near conical points is
studied. The “hyperbolic character” of the asymptotics shows itself in the properties
of the coefficients (stress intensity factors) depending on time. Some formulas for the
coefficients are presented and sharp estimates in Soboloev’s norms are proved.

§1. Introduction

Let G be a domain in R
n with boundary ∂G containing conical points. We consider a

class of hyperbolic systems of second-order differential equations with Neumann’s bound-
ary conditions in the cylinder G × R = {(x, t) : x ∈ G, t ∈ R} (and in the semicylinder
G × R+). In particular, this class includes the dynamical equations of elasticity the-
ory. Our main purpose is to study the asymptotics of solutions near the conical points.
We investigate the solvability of the problem mentioned above in a scale of weighted
spaces. This enables us to obtain and justify asymptotic formulas. For the coefficients
in the asymptotics (depending on time), we give explicit formulas and sharp estimates
in Sobolev’s norms.

The principal part of the asymptotics near a conical point is a linear combination∑
cj(t)uj(x) of functions uj satisfying a homogeneous elliptic problem in the “tangent”

cone; the latter problem is the elliptic part of the initial problem. The hyperbolic char-
acter of the asymptotics shows itself in the coefficients cj . They admit representations
of the form

(1.1) cj(t) =
∫

G

∫ +∞

−∞
f(x, t − s)wj(x, s) dx ds,

where f is the right-hand side of the hyperbolic system in question (we consider the
homogeneous boundary conditions), and the wj are some functions satisfying the homo-
geneous problem in the cylinder G × R and determined by their asymptotics near the
conical point. The proof of the above formulas is the main result of the paper.

The properties of coefficients are of special interest for elastodynamics (the stress
intensity factors). In the theory of elliptic boundary-value problems, the corresponding
formulas for the coefficients made it possible to study the asymptotics of fundamental
solutions (the Green functions and the Poisson kernels) near conical points ([26]; see also
[7]). It can be expected that formulas (1.1) will play a similar role for the fundamental
solutions to hyperbolic problems.
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The present paper contains no further investigation of the functions wj . We calculate
these functions explicitly for the wave equation in a cone. The expressions obtained
show that wj(x, t) = 0 for t < |x|, and the singular support satisfies sing supp wj ⊂
{(x, t) : |x| = t}. This and (1.1) directly yield some consequences for the coefficients
cj . (For instance, if the singular support of f is bounded in the spatial variables and
upper bounded in time, then a “back edge” phenomenon occurs for the coefficients in the
asymptotics: the functions cj become smooth after the moment when the perturbation
coming from the singular support of f leaves the vertex of the cone.)

The study of the model problem in an n-dimensional cone K constitutes the bulk
of the paper. As in [5, 6], the method is based on “combined” a priori estimates of
solutions. The Fourier transformation relative to time leads to a problem in the cone K
with parameter τ = σ − iγ, where σ ∈ R and γ > 0. In a neighborhood of the vertex (of
diameter const/|τ |) we employ a weighted elliptic estimate. Localizing a global energy
estimate, we obtain a weighted hyperbolic inequality far from the vertex. Requiring
some additional smoothness of the data with respect to time, we match the hyperbolic
inequality with the elliptic estimate in the intermediate zone.

As has already been mentioned, we consider scales of weighted spaces. Roughly speak-
ing, as the weight we take |x|β exp(−γt), where |x| is the distance from the vertex of K.
The combined estimates are proved for all β ≤ 1, β �∈ {βk}, where {βk} is a sequence
such that 1 > β1 > β2, . . . , βk → −∞. In the cone, the problem involving a parameter
gives rise to a closed operator. The kernel and cokernel of this operator are trivial if
β ∈ (β1, 1]. As β decreases, the dimension of the cokernel increases (when β crosses βk)
but remains finite. The elements of a basis of the cokernel are uniquely determined by
their asymptotics near the vertex. This allows us to obtain the asymptotics of solutions
near the vertex of the cone, including formulas for the coefficients. The inverse Fourier
transformation carries the theory over to the problem with time, posed in the cone.

To implement the above method for the Neumann problem, we need to modify the
argument used in [6] in the case of the Dirichlet boundary condition. In particular, the lo-
calization procedure becomes more complicated. The proof of a global weighted estimate
for solutions of the problem with parameter in a cone becomes more involved, as well as
the estimate itself. (Technically, these complications are due to the fact that multipli-
cation by a cut-off function and the operator of boundary condition do not commute in
general.) Dealing with the equations of elasticity theory, we employ a nonstandard “Korn
inequality” proved in [2]. The corresponding weighted spaces must be defined in a special
way for n = 2: a weaker “nonhomogeneous” norm must be employed to incorporate the
generalized (strong) solutions in a proper weighted space (this is well known in the theory
of elliptic boundary-value problems in domains with piecewise smooth boundaries; see,
e.g., [12, 7]; here we merely adapt the corresponding techniques to our problem).

The paper consists of seven sections. A strong solution for the problem with parameter
in a cone is introduced in §2; the combined estimates of solutions are established in §3. In
§4 we study the properties of the operator of this problem. The asymptotics of solutions
of the problem with time in a cone is described in §5. These results are specified for the
wave equation in §6. Finally, in §7 we explain briefly how these results can be extended
to the problem in the cylinder G × R.

Let us indicate some publications related to hyperbolic problems in nonsmooth do-
mains; however, the results of that work are not used here. The wave equation was con-
sidered in [13] (a wedge with edge of codimension 2, an explicit formula for solutions),
in [14] (domains with edges, the fundamental solution, propagation of singularities; the
approach was based on a functional calculus for the Laplace operator), in [15, 16] (mi-
crolocal analysis), and in [17] (the homogeneous Dirichlet boundary condition); see also
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the references in these papers. The monographs [18]–[20] were devoted to the case of rec-
tilinear boundary and were mostly built on explicit formulas. A certain general approach
different from that presented in [5] and [6] was proposed in [21, 22] (strongly hyperbolic
systems in a domain with a conical point, the homogeneous Dirichlet boundary condi-
tions); this approach does not lead to formulas for the coefficients.

§2. The model problems in a cone. A strong solution

2.1. The problem in a cone. Let K be an open cone in Rn with boundary ∂K
and with vertex O at the origin. Let Ω be the (relatively) open set cut out by K
from the (n − 1)-dimensional unit sphere Sn−1. We assume that the boundary ∂Ω is
smooth. We introduce a hyperbolic operator L(Dx, Dt) = P (Dx)−D2

t with elliptic part
P (Dx) =

∑
ApqDxp

Dxq
, where 1 ≤ p, q ≤ n, the Apq are (m×m)-matrices with constant

complex entries, and Aqp = A∗
pq. The operator P (Dx) is subject to one of the following

two conditions:
a)

∑
〈Apqηp, ηq〉 ≥ c|η|2 for all ηp ∈ C

m, where c > 0, |η|2 =
∑

|ηp|2, and 〈·, ·〉 denotes
the inner product in Cm;

b)P (Dx) coincides with the Lamé operator −µ∆ − (λ + µ) grad div (and then m =
n = 2, 3).

In the cylinder Q = {(x, t) : x ∈ K, t ∈ R}, consider the problem

(2.1)

{
L(Dx, Dt)u(x, t) = f(x, t), (x, t) ∈ Q,

N(x, Dx)u(x, t) = 0, (x, t) ∈ ∂Q.

Here N(x, Dx) is the (m × m)-matrix of first-order differential operators in the Green
formula

(2.2) (P (Dx)u, v)K = a(u, v; K) − (Nu, v)∂K , u, v ∈ C∞
c (K),

and a(·, ·;W) is a symmetric sesquilinear form (i.e., a(u, v; K) = a(v, u;W)), specifically,

(2.3) a(u, v; K) =
∫
W

α(∇u,∇v) dx =
∫

K

n∑
r,s=1

m∑
β,γ=1

aβγrs∂xr
uβ∂xs

vγ dx.

We assume that the operator {P (Dx), N(x, Dx)} is elliptic. In particular, if P (Dx) =
−µ∆ − (λ + µ) grad div with λ ≥ 0 and µ > 0, then we put Nu = {

∑
k σjk(u)νk}3

j=1,
where {σjk} is the stress tensor,

σjk(u) = µ

(
∂uj

∂xk
+

∂uk

∂xj

)
+ δjkλ div u,

and ν = {ν1, ν2, ν3} is the outward normal to the boundary.
Setting ηp = ξpζ with ξp ∈ C and ζ ∈ Cm in condition a), we obtain∑

1≤s,p≤n

(Aspζ, ζ)ξsξp ≥ c|ξ|2|ζ|2,

which is equivalent to the strong ellipticity of the operator P (Dx). However, for the
Lamé operator (which is known to be strongly elliptic) condition a) fails; the energy
form α(·, ·) is no better than nonnegative.

As an example, we also consider the Neumann problem for the scalar wave equation

(2.4) (∂2
t − ∆)u = f on Q, ∂νu = 0 on ∂Q;

in this case some of our results become more explicit and their proofs shorten.
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2.2. Energy estimates on solutions of the problem with parameter. Applying
the Fourier transformation Ft→τ to equations (2.1), we obtain a problem with parameter
τ :

(2.5)

{
L(Dx, τ )û(x, τ) = f̂(x, τ), x ∈ K,

N(x, Dx)û(x, τ) = 0, x ∈ ∂K.

Proposition 2.1. Suppose v ∈ C∞
c (K̄) and N(x, Dx)v = 0 on ∂K. Then the estimate

(2.6) γ2

∫
K

(p2|v(x)|2 + |∇v(x)|2) dx ≤ c

∫
K

|L(Dx, σ − iγ)v(x)|2 dx

is true with a constant c independent of the parameter τ = σ − iγ, where σ ∈ R, γ > 0,
and p = |τ |.

Let H1(K) denote the usual Sobolev space in K. We preface the proof of the propo-
sition with the following assertion.

Lemma 2.2. Let a(·, ·; K) be the same form as in (2.2). Then for all u ∈ H1(K) we
have

(2.7) ‖∇u; L2(K)‖2 ≤ c a(u, u; K),

where c is a constant independent of u.

Proof of the lemma. If P (Dx) satisfies condition a), then for the form α(·, ·) in (2.3) we
have

α(∇u,∇u) =
∑

(Apq∂xp
u, ∂xq

u) ≥ c|∇u|2,
which leads to (2.7). If P (Dx) is the Lamé operator, then

(2.8) a(u, u; K) ≥ E(u; K),

where

E(u; K) =
∫

K

∑
j,h

|∂xh
uj + ∂xj

uh|2 dx

(see, e.g., [3]). In this case, (2.7) follows from (2.8) and “the Korn inequality”

(2.9) E(u;K) ≥ c‖∇u; L2(K)‖2, u ∈ H1(K), c > 0.

It should be emphasized that inequality (2.9) is “nonclassical” (the domain K is un-
bounded and there is no summand ‖u; L2(K)‖2 on the left in (2.9)). Estimate (2.9) is
contained in [2, Theorem 3.1]. �

Proof of Proposition 2.1. Put

f(x, t) = ∂2
t w(x, t) + P (Dx)w(x, t)

with w lying in the Schwartz space S(Rn+1
x,t ) and satisfying N(x, Dx)w = 0 on ∂K. We

have ∫
K

∫ t

−∞
(〈wtt, wt〉 + 〈P (Dx)w, wt〉) dx dt =

∫
K

∫ t

−∞
〈f, wt〉 dx dt.

Adding this identity to its complex conjugate, we obtain

(2.10)

∫
K

∫ t

−∞
(∂t|wt|2 + 〈P (Dx)w, wt〉 + 〈wt, P (Dx)w〉) dx dt

= 2�
∫

K

∫ t

−∞
〈f, wt〉 dy dt.
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Formula (2.2) yields

(P (Dx)w, wt)K + (wt, P (Dx)w)K

= (P (Dx)w, wt)K + (P (Dx)wt, w)K = ∂t(P (Dx)w, w)K .

Therefore, (2.10) can be rewritten as

‖wt(·, t); L2(K)‖2 + (P (Dx)w(·, t), w(·, t))K = 2�
∫

K

∫ t

−∞
〈f, wt〉 dx dt.

Using (2.2), (2.7), and the relation N(x, Dx)w|∂K = 0, we arrive at the inequality

(2.11)
‖wt(·, t); L2(K)‖2 + ‖∇xw(·, t); L2(K)‖2

≤ c

∫ t

−∞
‖f(·, t); L2(K)‖ ‖wt(·, t); L2(K)‖ dt.

We denote by h(t) the integrand on the right, multiply (2.11) by e−2γt, and integrate to
obtain∫ +∞

−∞
e−2γs(‖ws(·, s); L2(K)‖2 + ‖∇xw(·, s); L2(K)‖2)

≤ c

∫ +∞

−∞
e−2γs

∫ s

−∞
h(r) dr = c

∫ +∞

−∞
h(r) dr

∫ +∞

r

e−2γs ds

≤ (cγ−1/2)
∫ +∞

−∞
h(r)e−2γr dr

≤ (cγ−1/2)
( ∫ +∞

−∞
e−2γt‖f(·, t)‖2 dt

)1/2( ∫ +∞

−∞
e−2γt‖wt(·, t)‖2 dt

)1/2

.

Consequently,

(2.12)
γ2

∫ +∞

−∞
e−2γt(‖wt(·, t); L2(K)‖2 + ‖∇xw(·, t); L2(K)‖2) dt

≤ c

∫ +∞

−∞
e−2γt‖f(·, t)‖2 dt.

In (2.12) we put w(x, t) = v(x)ψ(t), where ψ ∈ e−γtS(R) ∩ S(R), v ∈ C∞
c (K̄), and

N(x, Dx)v|∂K = 0. We have

γ2

∫
K

dx

∫ +∞

−∞
dσ|ψ̂(σ − iγ)|2(p2|v(x)|2 + |∇xv(x)|2)

≤ c

∫
K

dx

∫ +∞

−∞
dσ|ψ̂(σ − iγ)|2|L(Dx, σ − iγ)v(x)|2.

Since the function ψ ∈ e−γtS(R) ∩ S(R) is arbitrary, this justifies (2.6). �

2.3. A weak solution of the problem with parameter. To simplify the notation,
we rewrite (2.5) in the form

(2.13) L(Dx, τ )u = {−τ2 + P (Dx)}u = f in K; N(x, Dx)u = 0 on ∂K.

As usual, a function u ∈ H1(K) is called a weak solution of problem (2.13) (with f ∈
L2(K)) if

(2.14) B(u, v) := a(u, v; K) − τ2

∫
K

uv̄ dx =
∫

K

fv̄ dx
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for any v in H1(K). The existence of a unique weak solution of (2.13) can be obtained
easily from the Lax–Milgram–Vishik lemma (in the form given in [1, Remark 2.9.3])
combined with the following assertion.

Proposition 2.3. If τ2 ∈ C \ R̄+, then

|B(u, u)| ≥ δ‖u; H1(K)‖2

with δ = δ(τ ) > 0.

Proof. Let α = ‖u; L2(K)‖2, and let β = a(u, u; K). By (2.7), we have

(α2 + β2)1/2 ≥ 2−1/2(α + β)

≥ 2−1/2(‖u; L2(K)‖2 + c1(‖∇u; L2(K)‖2) ≥ c2‖u; H1(K)‖2.

Therefore, it suffices to show that

(2.15) |B(u, u)|2 ≥ δ2(α2 + β2).

Setting τ2 = σ1+iγ1 with real σ1 and γ1, we obtain |B(u, u)|2 = β2+(σ2
1+γ2

1)α2−2σ1αβ.
If σ1 = 0 and γ1 �= 0 or σ1 < 0, then (2.15) is obvious. If σ1 > 0, we have γ1 �= 0. Choose
ε ∈ R such that ε2 < 1 and (ε−2 − 1)σ2

1 < γ2
1 . Then 2σ1αβ ≤ ε2β2 + ε−2σ2

1α
2 and

|B(u, u)|2 ≥ β2(1 − ε2) + α2[γ2
1 − (ε−2 − 1)σ2

1 ] ≥ δ2(α2 + β2). �

2.4. A strong solution of the problem with parameter. We view the map A(τ ) :
u �→ L(Dx, τ )u as an unbounded operator in L2(K) with domain

{u ∈ C∞(K̄ \ O) ∩ H1(K) : N(x, Dx)u|∂K = 0, L(Dx, τ )u ∈ L2(K)}.

This operator admits closure. From now on, A(τ ) stands for this closure with domain
D(A(τ )).

Definition 2.4. Let f ∈ L2(K). A solution of the equation A(τ )u = f is called a strong
solution of problem (2.13).

Theorem 2.5. For any f ∈ L2(K) there exists a unique strong solution u of problem
(2.13). The estimate

(2.16) γ2(p2‖u; L2(K)‖2 + ‖∇u; L2(K)‖2) ≤ c‖f ; L2(K)‖2

is fulfilled with a constant c independent of τ = σ − iγ, where σ ∈ R, γ > 0, and p = |τ |.

Proof. Estimate (2.6) remains valid for v ∈ D(A(τ )). Hence, the kernel of A(τ ) is trivial
and the range of the operator is closed. Moreover, C∞

c (K) ⊂ im A(τ ), because the weak
solution of problem (2.13) with f ∈ C∞

c (K) belongs to D(A(τ )) in accordance with the
known results of the theory of elliptic boundary-value problems. Since imA(τ ) is closed,
this implies that imA(τ ) = L2(K). �

§3. Weighted estimates of solutions

of the problem with parameter in a cone

3.1. Estimates far from the vertex of the cone. Let s be a nonnegative integer,
and let β ∈ R. We introduce the space Hs

β(K) as the completion of C∞
c (K \ O) with

respect to the norm

(3.1) ‖u; Hs
β(K)‖ =

( ∑
|α|≤s

∫
K

|y|2(β−s+|α|)|Dα
y u(y)|2 dy

)1/2

.
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The space Hs
β(K; q) with positive parameter q is equipped with the norm

(3.2) ‖u; Hs
β(K; q)‖ =

( s∑
k=0

q2k‖u; Hs−k
β (K)‖2

)1/2

.

We also put

‖u; H0
β(∂K)‖ =

( ∫
∂K

|u(x)|2|x|2β dx

)1/2

.

Proposition 3.1. Let κ∞ ∈ C∞(Rn) be a cut-off function such that 0 ≤ κ∞ ≤ 1,
κ∞(η) = 1 for |η| > c1 > 0, and κ∞(η) = 0 for |η| < c1/2. Let Ψ ∈ C∞(Rn) be another
cut-off function such that 0 ≤ Ψ ≤ 1, Ψ(η) = 1 for c1/2 < |η| < C1p

2/2γ2, and Ψ(η) = 0
for |η| < c1/4 and |η| > C1p

2/γ2. Then the constant C1 can be chosen so that the
estimate

(3.3)
(γ/p)2‖κ∞u; H1

β(K; 1)‖2

≤ c{‖κ∞L(Dη, θ)u; H0
β(K)‖2 + ‖Ψu; H1

β−1(K; 1)‖2 + ‖Ψu; H0
β−1/2(∂K)‖2}

is valid for all u ∈ C∞
c (K̄ \O) satisfying N(η, Dη, θ)u|∂K = 0; here θ = τ/p with p = |τ |.

The constants c, c1, and C1 are independent of τ = σ − iγ, where σ ∈ R and γ > 0.

Proof. We choose κ and ψ in C∞
c (Rn) with supp κ ⊂ {1/2 < |y| < 2}, supp ψ ⊂ {1/4 <

|y| < 4}, and κψ = κ. Note that if u ∈ C∞
c (K̄ \ O) and N(x, Dx)u|∂K = 0, then

(3.4) ‖N(x, Dx)(κu); ∂K‖ = ‖[N(x, Dx), κ]u; ∂K‖ ≤ C‖ψu; ∂K‖;
here and in what follows we denote ‖w; M‖ := ‖w; L2(M)‖. We assume that w ∈
C∞

c (K̄ × R) and N(x, Dx)w|∂K = 0, and put

fκ(x, t) = (∂2
t + P (Dx))(κw(x, t)).

Arguing in the same way as in (2.10), we obtain

(3.5)

∫
K

∫ t

−∞
(∂t|κwt|2 + 〈P (Dx)(κw), κwt〉 + 〈κwt, P (Dx)(κw)〉) dx dt

= 2�
∫

K

∫ t

−∞
〈fκ, κwt〉 dx dt.

Formulas (2.2) and (3.4) lead to the relations

(P (Dx)(κw), κwt)K + (κwt, P (Dx)(κw))K

= (κw, P (Dx)(κwt))K + (κwt, P (Dx)(κw))K − (N(x, Dx)(κw), κwt)∂K

+ (κw, N(x, Dx)(κwt))∂K

= ∂t�(P (Dx)(κw), κw)K −�{(N(x, Dx)(κw), κwt)∂K − (κw, N(x, Dx)(κwt))∂K}
≥ ∂t�(κw, P (Dx)(κw))K − c‖ψw; ∂K‖ ‖ψwt; ∂K‖.

Together with (3.5), this gives

(3.6)
‖κwt(·, t); K‖2 + �(P (Dx)(κw(·, t)), κw(·, t))K

≤ c2

( ∫ t

−∞
‖ψw; ∂K‖ ‖ψwt; ∂K‖ dt +

∫ t

−∞
‖fκ; K‖ ‖κwt; K‖ dt

)
.

On the other hand,

(3.7)
�(P (Dx)(κw), κw)K = a(κw, κw; K) −�(N(x, Dx)(κw), κw)∂K

≥ c3‖∇x(κw(·, t)); K‖2 − c4‖ψw; ∂K‖2.
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Comparison of (3.6) and (3.7) yields
(3.8)
‖κwt(·, t); K‖2 + ‖∇x(κw(·, t)); K‖2

≤ c5

( ∫ t

−∞
‖ψw; ∂K‖ ‖ψwt; ∂K‖ dt +

∫ t

−∞
‖fκ; K‖ ‖κwt; K‖ dt + ‖ψw; ∂K‖2

)
.

We multiply (3.8) by e−2γt and integrate. As in the proof of (2.12), we obtain the
inequality∫ +∞

−∞
e−2γt

{
‖κwt(·, t); K‖2 + ‖∇x(κw(·, t)); K‖2

}
dt

≤ (c6/γ)
(∫ +∞

−∞
e−2γt(‖ψw; ∂K‖ ‖ψwt; ∂K‖ + ‖fκ; K‖ ‖κwt; K‖) dt

+c7

∫ +∞

−∞
e−2γt‖ψw; ∂K‖2 dt

)
.

Since
γ−1‖ψw‖ ‖ψwt‖ ≤ 2−1(‖ψw‖2 + γ−2‖ψwt‖)

and
γ−1‖fκ‖ ‖κwt‖ ≤ Cεγ

−2‖fκ‖2 + ε‖κwt‖2,

we have

(3.9)
γ2

∫ +∞

−∞
e−2γt{‖κwt(·, t); K‖2 + ‖∇x(κw(·, t)); K‖2} dt

≤ c

∫ +∞

−∞
e−2γt(‖fκ; K‖2 + γ2‖ψw; ∂K‖2 + ‖ψwt; ∂K‖2) dt.

In (3.9) we take w(x, t) = v(x)χ(t), where v ∈ C∞
c (K̄), N(x, Dx)v = 0 on ∂K, and

χ ∈ e−γtS(R) ∩ S(R). Then

(3.10)
γ2(|τ |2‖κv; K‖2 + ‖∇x(κv); K‖2)

≤ c(‖L(Dx, τ )(κv); K‖2 + γ2‖ψv; ∂K‖2 + |τ |2‖ψv; ∂K‖2).

Observe that

(3.11)
‖L(Dx, τ )(κv); K‖ ≤ ‖κL(Dx, τ )v; K‖ + ‖[L(Dx, τ ), κ]v; K‖

≤ ‖κL(Dx, τ )v; K‖ + c(p‖ψv; K‖ + ‖ψv; K‖ + ‖∇(ψv); K‖).

Using the inequalities ‖ψv; K‖ ≤ c‖∇(ψv); K‖, (3.10), and (3.11), we arrive at the
estimate

(3.12)
γ2(p2‖κv; K‖2 + ‖∇x(κv); K‖2)

≤ c(‖κL(Dx, τ )v; K‖2 + p2‖ψv; K‖2 + ‖∇(ψv); K‖2 + p2‖ψv; ∂K‖2).

In (3.12) we replace v by the function y �→ Vε(x) = u(ε−1x), where N(x, Dx)u = 0
on ∂K, and instead of τ we take τ/(εp) with ε > 0. (Since the coefficients of the
differential operator N(x, Dx) only depend (linearly) on the unit normal ν(x) to ∂K,
this substitution is possible.) Then (3.12) takes the form
(3.13)

γ2ε−2p−2(ε−2‖κVε; K‖2 + ‖∇x(κVε); K‖2)

≤ c(‖κL(Dx, θ/ε)Vε; K‖2 + ε−2‖ψVε; K‖2 + ‖∇(ψVε); K‖2 + ε−2‖ψVε; ∂K‖2).
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Making the change of variables x �→ η = ε−1x and multiplying by ε4−(n−d), we obtain

(3.14)
γ2p−2(‖κεu; K‖2 + ‖∇(κεu); K‖2)

≤ c(‖κεL(Dη, θ)u; K‖2 + ε2{‖ψεu; K‖2 + ‖∇(ψεu); K‖2} + ε‖ψεu; ∂K‖2),

where κε(η) = κ(εη), ψε(η) = ψ(εη). We multiply (3.14) by ε−2β , set ε = 2−j , j =
1, 2, . . . , and sum all the inequalities. The sum of the terms ε1−2β‖ψεu; ∂K‖2 with
ε = 2−j < γ2/24p2c does not exceed (γ2/22p2)‖κ∞u; H1

β(K; p)‖2. Therefore, this sum
can be moved to the left-hand side of the resulting inequality. The same is true for the
terms coming from the expression ε2{‖ψεu; K‖2 + ‖∇(ψεu); K‖2}. Thus, we arrive at
(3.3). �

If the commutator [N(x, Dx), κ] vanishes, on the right-hand side of (3.3) the norm
‖·; H0

β−1/2(∂K‖ can be dropped. For instance, consider the case of m = 1, with the
operators

(3.15) L(Dx, Dt) := ∂2
t − ∆x and N(x, Dx) := ∂ν .

Proposition 3.2. Let L and N be as in (3.15). If u ∈ C∞
c (K̄ \ O) is such that

N(x, Dx)u|∂K = 0, then

(3.16)
(γ/p)2‖κ∞u; H1

β(K; 1))‖2

≤ c{‖κ∞L(Dx, θ)u; H0
β(K)‖2 + ‖Ψu; H1

β−1(K; 1)‖2}
with constant c independent of τ = σ − iγ, where σ ∈ R, γ > 0, and p = |τ |.
Proof. Since N(x, Dx)(κu) = ∂νu = 0, Proposition 2.1 implies that

γ2(p2‖κv; K‖2 + ‖∇x(κv); K‖2) ≤ c(‖L(Dx, τ )(κv); K‖2).

Now, we deduce (3.16) in the same way as (3.3) was deduced from (3.10). �
3.2. Estimates near the vertex of the cone. The boundary-value problem

(3.17) L(Dη, θ)u = f, η ∈ K; N(η, Dη)u = 0, η ∈ ∂K \ 0,

is elliptic. We shall use some results about elliptic boundary-value problems in domains
with conical points (see, e.g., [7]).

We introduce an operator pencil A in Ω = K ∩ Sn−1 by the rule

(3.18) C � λ �→ A(λ) = {|x|2−iλP (Dx)|x|iλ, |x|1−iλN(x, Dx)|x|iλ}.
The map A(λ) : H2(Ω) → L2(Ω) × H1/2(∂Ω) is an isomorphism for all λ ∈ C except
for the normal eigenvalues. Each strip |�λ| < const contains finitely many points of the
spectrum of A(λ).

Proposition 3.3 (see [7, Theorem 4.1.2]). For β ∈ R, suppose that the line �λ =
β − 2 + n/2 is free from the spectrum of A. Then for every u ∈ H2

β(K; 1) satisfying
N(η, Dη)u = 0 on ∂K we have the estimate

(3.19) ‖χu; H2
β(K; 1)‖2 ≤ c{‖χL(Dη, θ)u; H0

β(K)‖2 + ‖ψu; H1
β(K; 1)‖2},

where χ, ψ ∈ C∞
c (Rn), χψ = χ, and χ = 1 near the vertex of K; the constant c is

independent of θ = δ/p.

For n = 2 we shall need “nonhomogeneous” norms. Let H2,0
β (K) denote the space

with the norm

‖u; H2,0
β (K)‖ = ‖rβ−1u; L2(K)‖2 +

∑
0<|α|≤2

‖rβ−2+|α|Dαu; L2(K)‖2.

Before proceeding to problem (3.17), we prove two lemmas. The first of them is
contained in [7, Proposition 4.5.2].
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Lemma 3.4. Let n = 2, and let u ∈ H2,0
β (K) with β < 1. Then the limit

u(0) = lim
r→0+

|Ω|−1

∫
Ω

u(r, ω) dω

(where Ω = K ∩ S1 and |Ω| is the length of the arc Ω on S1) exists. Moreover, χu =
χ(v + u(0)), where v ∈ H2

β(K), χ ∈ C∞
c (R2), and χ = 1 in a neighborhood of the origin.

We have

(3.20) ‖rβ−2(u − u(0)); L2(K ∩ {|y| ≤ 1})‖ ≤ c‖rβ−1∇u; L2(K ∩ {|y| ≤ 1})‖,

(3.21) |u(0)| ≤ c{‖rβ−1∇u; L2(K ∩ {|y| ≤ 1})‖ + ‖u; L2(K ∩ {1/2 ≤ |y| ≤ 1})‖}.
If β ≤ 0, then u(0) = 0.

Lemma 3.5. Under the assumptions of Lemma 3.4, let ε ∈ (0, 1). Then

|u(0)| ≤ ε‖rβ−1∇u; L2(K ∩ {|y| ≤ 1})‖
+ Cε‖u; L2(K ∩ {ε1/(1−β)/2 ≤ |y| ≤ 1})‖.

(3.22)

Proof. Applying (3.21) to the function y �→ w(y) = u(εy), we obtain

|u(0)|2 ≤ c
{
ε2

∫
K∩{|x|≤1}

|x|2β−2|∇u(εy)|2 dx +
∫

K∩{1/2≤|x|≤1}
|u(εx)|2 dx

}
≤ c

{
ε2−2β)

∫
K∩{|x|≤1}

|x|2β−2|∇u(x)|2 dx + ε−2

∫
K∩{ε/2≤|x|≤1}

|u(x)|2 dx
}

.

It remains to replace ε by ε1/(1−β). �
Now we are ready to obtain “nonhomogeneous” estimates of solutions of problem

(3.17) in a neighborhood of the vertex of K.

Proposition 3.6. Suppose n = 2, u ∈ H2,0
β (K) with β < 1, and N(η, Dη)u = 0 on ∂K.

If the line �λ = β − 1 contains no eigenvalues of the pencil A, then for some δ > 0 we
have the estimate

(3.23) ‖χu; H2,0
β (K)‖ ≤ c{‖χL(Dη, θ)u; H0

β(K)‖ + ‖u; H1(K ∩ {δ ≤ |η| ≤ 2})‖}
with constant c independent of u and θ; here χ ∈ C∞

c (R2), χ(η) = 1 for |η| ≤ 1, and
χ(η) = 0 for |η| ≥ 3/2.

Proof. Let ψ ∈ C∞
c (R2) be a cut-off function such that ψχ = χ. By Lemma 3.4, ψu =

ψv + ψu(0) with ψv ∈ H2
β(K). Since the line �λ = β − 1 is free from the spectrum of A,

we have

(3.24)
‖χv; H2

β(K)‖

≤ c{‖χL(Dη, θ)v; H0
β(K)‖ + ‖χN(η, Dη)v; H1/2

β (∂K)‖ + ‖ψv; H1
β(K)‖}.

Observe that
χN(η, Dη)v = χN(η, Dη)u − χN(η, Dη)u(0) = −χN(η, Dη)u(0),

χL(Dη, θ)v = χL(Dη, θ)u + χL(Dη, θ)u(0).

Therefore, (3.24) implies the estimates

(3.25)

‖χu; H2,0
β (K)‖ ≤ c(‖χv; H2

β(K)‖ + ‖χu(0); H2,0
β (K)‖)

≤ c{‖χL(Dη, θ)u; H0
β(K)‖ + ‖ψv; H1

β(K)‖

+ ‖χL(Dη, θ)u(0); H0
β(K)‖ + ‖χN(η, Dη)u(0); H1/2

β (∂K)‖}
≤ c{‖χL(Dη, θ)u; H0

β(K)‖ + ‖ψv; H1
β(K)‖ + |u(0)|}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NEUMANN PROBLEM FOR HYPERBOLIC SYSTEMS 487

Recall that if β ≤ 0, then u(0) = 0. Using (3.20), we obtain

‖ψv; H1
β(K)‖2 ≤ c

∫
K∩{|x|≤2}

(|v|2r2β−2 + |∇u|2r2β) dx

≤ c
{
ε2

∫
K∩{|x|≤ε}

(|u − u(0)|2r2β−4 + |∇u|2r2β−2) dx

+
∫

K∩{ε≤|x|≤2}
(|u − u(0)|2r2β−2 + |∇u|2r2β) dx

}
≤ c

{
ε2

∫
K∩{|x|≤1}

|∇u|2r2β−2 dx + |u(0)|2
}

+ Cε‖u; Hq+1(K ∩ {ε ≤ |x| ≤ 2})‖2

≤ c{ε2‖χu; H2,0
β (K)‖2 + |u(0)|2} + Cε‖u; H1(K ∩ {ε ≤ |x| ≤ 2})‖2.

Taking a sufficiently small ε, we bound |u(0)| with the help of inequality (3.22). Now we
can rewrite (3.25) in the form

‖χu; H2,0
β (K)‖

≤ c‖χL(Dη, θ)u; H0
β(K)‖ + ε‖χu; H2,0

β (K)‖ + Cε‖u; H1(K ∩ {δ ≤ |η‖ ≤ 2})‖.

Transferring the term with factor ε to the left, we arrive at (3.23). �

3.3. Global estimates.

Proposition 3.7. Suppose the line �λ = β − 2 + n/2 contains no eigenvalues of the
pencil A. Then, under the condition β ≤ 1/2, for any function v ∈ H1(K) ∩ H2

β(K)
satisfying N(x, Dx)v = 0 on ∂K we have

(3.26)
‖χpv; H2

β(K; p)‖2 + γ2‖v; H1
β(K; p)‖2

≤ c(‖L(Dx, τ )v; H0
β(K)‖2 + (p2−2β/γ2)‖L(Dx, τ )v; K‖2)

with constant c independent of τ = σ − iγ, where σ ∈ R and γ > 0. If 1/2 < β ≤ 1, then
inequality (3.26) remains valid with p2β/γ4β in place of p2−2β/γ2 on the right-hand side.

Proof. We add estimates (3.3) and (3.19). We can supress the cut-off function κ∞ on
the left-hand side and the norm ‖ψu; H1

β(K; 1)‖ on the right-hand side of the resulting
inequality. Therefore,

(3.27)
‖χu; H2

β(K; 1)‖2 + (γ/p)2‖u; H1
β(K; 1)‖2

≤ c{‖L(Dη, θ)u; H0
β‖2 + ‖Ψu; H1

β−1(K; 1)‖2 + ‖Ψu; H0
β−1/2(∂K)‖2}.

If β ≤ 1/2, then

(3.28)
‖Ψu; H0

β−1/2(∂K)‖2 ≤
∫
{η∈∂K:0<c1<|η|}

|η|2(β−1/2)|u(η)|2 dη ≤ c‖u; ∂K‖2

≤ c(‖u; K‖2 + ‖∇u; K‖2) ≤ c(p/γ)2‖L(Dη, θ)u; K‖2

(this follows from the well-known inclusion H1(K) ⊂ L2(∂K) and estimate (2.6) with
θ = (σ − iγ)/p in place of σ − iγ and γ/p in place of γ). Moreover,

(3.29)
‖Ψu; H1

β−1(K; 1)‖2 ≤ c

∫
0<c1<|η|

|η|2(β−1)(|∇u|2 + |η|−2|u|2 + |u|2) dη

≤ c

∫
K

(|∇u|2 + |u|2) dη ≤ c(p/γ)2‖L(Dη, θ)u; K‖2.
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Inequalities (3.27), (3.28), and (3.29) imply

(3.30)
‖χu; H2

β(K; 1)‖2 + (γ/p)2‖u; H1
β(K; 1)‖2

≤ c{‖L(Dη, θ)u; H0
β(K)‖2 + (p/γ)2‖L(Dη, θ)u; L2(K)‖2}.

Here we put x = p−1η, χp(x) = χ(px), and v(x) = u(px). Observe that

N(η, Dη)u|∂K = 0 ⇐⇒ N(x, Dx)v|∂K = 0.

As a result, we obtain (3.26).
Now, suppose that 1/2 < β ≤ 1. Formula (3.29) is still true, whereas (3.28) must be

modified. We have

(3.31)

‖Ψu; H0
β−1/2(∂K)‖2 ≤

∫
{η∈∂K:|η|<C1p2/γ2}

|η|2(β−1/2)|u(η)|2 dη

≤ C2(p2/γ2)2β−1‖u; ∂K‖2 ≤ C3(p2/γ2)2β−1(‖u; K‖2 + ‖∇u; K‖2)

≤ C4(p2/γ2)2β‖L(Dη, θ)u; K‖2.

Thus, we arrive at inequality (3.30) with (p/γ)2 +(p/γ)4β in place of (p/γ)2 on the right.
Obviously, (p/γ)2 + (p/γ)4β < 2(p/γ)4β for β > 1/2. As before, passage to the variables
x, χp(x), and v(x) completes the proof. �

Turning to nonhomogeneous norms, we introduce the space H2,0
β (K; p) with the norm

(3.32) ‖v; H2,0
β (K; p)‖ =

( ∫ 2∑
|α|=1

|x|2β−4+2|α||Dα
x v|2 dx + p2‖v; H1

β(K; p)‖2

)1/2

.

We have

‖v; H2
β(K; p)‖2 = ‖v; H2,0

β (K; p)‖2 +
∫

|x|2β−4|v(x)2 dx.

Proposition 3.8. Suppose that n = 2, β ≤ 1, and the line �λ = β − 1 is free from
the spectrum of the pencil A. Then, under the condition β ≤ 1/2, for any function
v ∈ C∞

c (K̄) satisfying N(x, Dx)v = 0 on ∂K we have the estimate

(3.33)
‖χpv; H2,0

β (K; p)‖2 + γ2‖v; H1
β(K; p)‖2

≤ c(‖L(Dx, τ )v; H0
β(K)‖2 + (p2−2β/γ2)‖L(Dx, τ )v; K‖2)

with constant c independent of τ . If 1/2 < β ≤ 1, inequality (3.33) remains valid with
p2β/γ4β in place of p2−2β/γ2 on the right.

Proof. Assume for instance that β ≤ 1/2. Using (3.23) rather than (3.19) and arguing
as in the proof of Proposition 3.7, we obtain

(3.34)
‖χu; H2,0

β (K; 1)‖2 + (γ/p)2‖u; H1
β(K; 1)‖2

≤ c{‖L(Dη, θ)u; H0
β(K)‖2 + (p/γ)2‖L(Dη, θ)u; L2(K)‖2}.

After the change of variables η �→ x = p−1η, this inequality takes the form

(3.35)

∫ 2∑
|α|=1

|x|2β−4+2|α||Dα
x (χpv)|2 dx + p2

∫
|x|2β−2|χpv|2 dx + γ2‖v; H1

β(K; p)‖2

≤ c(‖L(Dx, τ )v; H0
β(K)‖2 + (p2−2β/γ2)‖L(Dx, τ )v; K‖2).

Since p|x| ≤ const for x ∈ supp χp, we can add the remaining terms to the left-hand side
of (3.35) to get ‖χpv; H2,0

β (K; p)‖2. �
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§4. The problem with parameter in a cone: A scale of weighted spaces

4.1. The operator of the problem in weighted spaces. We define scales of function
spaces suggested by Propositions 3.7 and 3.8. In the case where n ≥ 3, the space
DHβ(K; p) is endowed with the norm

(4.1) ‖v; DHβ(K; p)‖ = (‖χpv; H2
β(K; p)‖2 + γ2‖v; H1

β(K; p)‖2)1/2.

If n = 2, then, by definition,

(4.2) ‖v; DHβ(K; p)‖ = (‖χpv; H2,0
β (K; p)‖2 + γ2‖v; H1

β(K; p)‖2)1/2.

For β ≤ 1/2, we denote by RHβ(K; p) the space with the norm

(4.3) ‖f ; RHβ(K; p)‖ = (‖f ; H0
β(K)‖2 + (p2−2β/γ2)‖f ; L2(K)‖2)1/2.

If 1/2 < β ≤ 1, we put

(4.4) ‖f ; RHβ(K; p)‖ = (‖f ; H0
β(K)‖2 + (p2β/γ4β)‖f ; L2(K)‖2)1/2.

We introduce the (unbounded) operator

(4.5) v �→ L(Dx, τ )v

in RHβ(K; p), with domain{
v ∈ C∞(K̄ \ O) ∩ DHβ(K; p) ∩ H1(K) :

L(Dx, τ )v ∈ RHβ(K; p), N(x, Dx)v = 0 on ∂K
}
.

The operator (4.5) admits closure. We denote by Aβ(τ ) this closure and by D(Aβ(τ ))
its domain. The next statement follows from Propositions 3.7 and 3.8.

Proposition 4.1. Suppose β ≤ 1 and the line �λ = β−2+n/2 contains no eigenvalues
of the pencil A. Then

1) D(Aβ(τ )) ⊂ D(A(τ ));
2) ker Aβ(τ ) = 0;
3) im Aβ(τ ) is closed in RHβ(K; p).

In order to describe imAβ(τ ), we need information about solutions of the homogeneous
problem (2.5) (with f ≡ 0). We present this information in the next subsection, mainly
restricting ourselves to formulations. For the proofs, we refer the reader, e.g., to [7].

4.2. On solutions of the homogeneous problem with parameter in the cone.
Let C � λ �→ A(λ) be the pencil defined in (3.18). Consider the function

(4.6) u(y) = riλ
k∑

q=0

1
q!

(i log r)qϕ(k−q)(ω),

where r = |x|, ω = x/|x|. This function is a solution of the boundary-value problem

(4.7)

{
P (Dx, 0)u(x) = 0 if x ∈ K,

N(x, Dx)u(x) = 0 if x ∈ ∂K

if and only if λ is an eigenvalue of A and ϕ(0), . . . , ϕ(k−q) is a Jordan chain corresponding
to λ (ϕ(0) is an eigenvector and ϕ(1), . . . , ϕ(k) are generalized eigenvectors). Any solution
of the form (4.6) is called a power solution. Let κ1 ≥ · · · ≥ κJ be the partial multiplicities
of an eigenvalue λ0, and let {ϕ(0,j), . . . , ϕ(κj−1,j); j = 1, . . . , J} be a canonical system of
Jordan chains. The functions

(4.8) u(k,j)(y) = riλ0

k∑
q=0

1
q!

(i log r)qϕ(k−q,j)(ω),
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where k = 0, . . . , κj − 1, j = 1, . . . , J , constitute a basis in the space of power solutions
corresponding to λ0.

The operator pencil (3.18) can be written as A(λ) = {P(λ), N(λ)}. For ϕ and ψ in
H2(Ω), we have the Green formula

(4.9)
(P(λ)φ, ψ)Ω + (N(λ)φ, ψ)∂Ω

= (φ, P(λ̄ + i(n − 2))ψ)Ω + (φ, N(λ̄ + i(n − 2))ψ)∂Ω,

which follows from the Green formula (2.2). Therefore, A(λ)∗ = A(λ̄ + i(n − 2)), where
A(λ)∗ stands for the adjoint operator to A(λ) relative to the Green formula (4.9). The
spectrum of the pencil A(λ) is symmetric with respect to the line �λ = (n − 2)/2.

We introduce the pencil

C � λ �→ A
∗(λ) := [A(λ̄)]∗ = A(λ + i(n − 2)).

If λ0 is an eigenvalue of A, then λ̄0 is an eigenvalue of A∗, and the geometric and
algebraic multiplicities of λ0 and λ̄0 coincide. Canonical systems of Jordan chains
{ϕ(0,j), . . . , ϕ(κj−1,j); j = 1, . . . , J} and {ψ(0,j), . . . , ψ(κj−1,j); j = 1, . . . , J} correspond-
ing to λ0 and λ̄0 can be chosen to satisfy the orthogonality and normalization condition

(4.10)
ν∑

p=0

k∑
q=0

1
(ν + k + 1 − p − q)!

×
{
(∂ν+k+1−p−q

λ P(λ0)ϕ(q,σ), ψ(p,ζ))Ω + (∂ν+k+1−p−q
λ N(λ0)ϕ(q,σ), ψ(p,ζ))∂Ω

}
= δσ,ζδκσ−k−1,ν ,

where δp,q is the Kronecker symbol, σ, ζ = 1, . . . , J , ν = 0, . . . , κζ − 1, and k = 0, . . . ,
κσ − 1. The functions

(4.11) v(k,j)(y) = riλ̄0−(n−2)
k∑

q=0

(q!)−1(i log r)qψ(k−q,j)(ω)

form a basis in the space of power solutions of problem (4.7) corresponding to λ̄0+i(n−2).
If condition (4.10) is fulfilled, then the bases (4.8) and (4.11) are said to match.

Consider the homogeneous problem

(4.12) L(Dx, τ )u = 0 in K; N(x, Dx)u = 0 on ∂K.

To be specific, first we assume that the line �λ = (n − 2)/2 is free from the spectrum
of A. (In general, this assumption may fail if n = 2. The modifications needed for
handling such problems will be indicated later.) Let λµ be an eigenvalue of the pencil
A such that �λµ < (n − 2)/2. We denote by {u(k,j)

µ } and {vk,j
µ } some matching bases

of power solutions of problem (4.7) corresponding to λµ and λ̄µ + i(n− 2). Substituting
the functions u

(k,j)
µ in (4.12) and compensating the discrepancies successively (see [7]),

we construct the formal series

(4.13) U (k,j)
µ (x, τ) =

∞∑
q=0

riλµ+qP (k,j)
q (ω, τ, log r)

satisfying (4.12). Here the P
(k,j)
q are polynomials in log r and τ with coefficients smoothly

depending on ω ∈ Ω̄. Replacing u
(k,j)
µ by v

(k,j)
µ , we obtain the formal series

(4.14) V (k,j)
µ (x, τ) =

∞∑
q=0

ri(λ̄µ+i(n−2))+qQ(k,j)
q (ω, τ, log r)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NEUMANN PROBLEM FOR HYPERBOLIC SYSTEMS 491

satisfying (4.12), where the properties of Q
(k,j)
q are similar to those of P

(k,j)
q .

Proposition 4.2. Let λµ with �λµ < (n − 2)/2 be an eigenvalue of A, and let {v(k,j)
µ }

be a basis in the space of power solutions corresponding to the eigenvalue λ̄µ + i(n − 2)
(see (4.11)). Then there exist functions x �→ w

(k,j)
µ (x, τ) in C∞(K̄ \O) satisfying (4.12)

and such that

(4.15) w(k,j)
µ (x, τ) = χV

(k,j)
µ,T (x, τ) + ρ(x, τ),

where V
(k,j)
µ,T (x, τ) is the T th partial sum of the series (4.14) with sufficiently large T . The

function ρ depends on k, j, µ, T , and χ, belongs to C∞(K̄ \ O), and satisfies ρ(x, τ) =
O(|x|h) with h = min{−�λµ : �λµ < (n − 2)/2} as x → 0 and τ is fixed. Moreover,
(1 − χ)ρ ∈ H2

β(K; p) for any β ∈ R. The functions w
(k,j)
µ (·, τ ) are unique and do not

depend on the choice of T and χ.

Proof. We outline the proof, which proceeds in several steps.
A) We check the uniqueness of w

(k,j)
µ . Suppose there exists another function w̃

(k,j)
µ with

representation similar to (4.15), w̃
(k,j)
µ = χ̃V

(k,j)

µ,T̃
+ ρ̃. Then the difference w

(k,j)
µ − w̃

(k,j)
µ

is in kerA(τ ) = 0, whence w
(k,j)
µ = w̃

(k,j)
µ .

B) We choose a function for the role of ρ; later we shall verify its properties. Introduce
the functions

fT := L(Dx, τ )χV
(k,j)
µ,T = χLV

(k,j)
µ,T + [L, χ]V (k,j)

µ,T ,

gT := N(x, Dx)χV
(k,j)
µ,T = χNV

(k,j)
µ,T + [N, χ]V (k,j)

µ,T .

It is clear that supp fT and supp gT are compact and that for sufficiently large T the
functions fT and gT decay rapidly as y → 0. We look for a function ρ satisfying

(4.16) L(Dx, τ )ρ = −fT , x ∈ K; N(x, Dx)ρ = −gT , x ∈ ∂K.

To prove the existence of ρ, we are going to use Theorem 2.5; therefore, we must pass
from (4.16) to a problem with a homogeneous boundary condition. For this, we consider
the elliptic boundary-value problem

(4.17) P (Dx)v = F , x ∈ K; N(x, Dx)v = −gT , x ∈ ∂K,

where F ∈ C∞
c (K).

In what follows we use some known results on elliptic problems in a cone (see, e.g.,
[7]). Problem (4.17) has a unique solution v in H2

1 (K). In order that (1 − χ)v belong
to H2

β(K) for a given β, the function F must be chosen in such a way that the right-
hand side of problem (4.17) satisfy a finite number of orthogonality conditions; these
conditions can be chosen to nullify the part of the asymptotics of v at infinity that does
not belong to H2

β(K). (As a matter of fact, the coefficients in the asymptotics are inner
products that involve the right-hand side of problem (4.17) and some special solutions
of the corresponding homogeneous problem.) Given β′, we obtain χv ∈ H2

β′(K) under
a few additional orthogonality conditions imposed on the right-hand side of (4.17) (here
we assume T to be sufficiently large to ensure that χgT ∈ H

1/2
β′ (∂K)). For the function

ρ̃ := ρ + v, we have the boundary-value problem

(4.18) L(Dx, τ )ρ̃ = −fT + F + τ2v, x ∈ K; N(x, Dx)ρ̃ = 0, x ∈ ∂K.

By Theorem 2.5, problem (4.18) admits a unique solution ρ̃ ∈ D(A(τ )).
C) We show that the function w

(k,j)
µ defined by (4.15) with ρ := ρ̃ − v possesses the

properties claimed in the proposition.
Problem (4.18) with fixed τ is elliptic, and its right-hand side is in C∞(K̄ \ O).

Therefore, ρ̃ ∈ C∞(K̄ \ O). Moreover, since −fT + F + τ2v decays rapidly as |x| → 0,
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we have ρ̃(x) = O(|x|h). Clearly, the same is true for ρ. Finally, to prove the relation
(1−χ)w(k,j)

µ ∈ H2
β(K; p) for any β ∈ R, we can employ the same argument as in the case

of the Dirichlet boundary condition (see [6], Proposition 4.3). �
Remark 4.3. Since the operator {L(Dx, Dt), N(x, Dx)} is invariant under the transfor-
mation t �→ −t, Proposition 4.2 remains true if τ = σ − iγ is replaced by τ̄ = σ + iγ.

4.3. Description of im Aβ(τ ). First, we recall some preliminary facts about the be-
havior of a strong solution of problem (2.13) near the vertex of K and near infinity. This
is not a definitive result on asymptotics yet, because this information contains no re-
mainder estimate uniform with respect to τ . For the time being, we keep the assumption
that the line �λ = (n − 2)/2 is free from the spectrum of A. Moreover, we assume that
the same is true for the line �λ = β − 2 + n/2 with some β < 1. We denote by Sβ the
set of all eigenvalues of A in the strip β − 2 + n/2 < �λ < (n − 2)/2.

Lemma 4.4. Suppose τ is fixed and f ∈ RHβ(K; p). Then the solution of the equation
A(τ )u = f admits the representation

(4.19) u =
∑
Sβ

c(k,j)
µ χU

(k,j)
µ,T + ũ,

where χũ ∈ H2
β(K; p) and U

(k,j)
µ,T is the T th partial sum of the series (4.13) with suffi-

ciently large T . The coefficients c
(k,j)
µ are continuous functionals on RHβ(K; p) defined

by

(4.20) c(k,j)
µ = i(f, w(k,j)

µ (·, τ̄)),

where w
(k,j)
µ is given by (4.15), and (·, ·) stands for the (extended) inner product on

L2(K). Finally, the bases of power solutions u
(k,j)
µ and v

(k,j)
µ used in (4.13) and (4.14)

are matched in the sense of (4.10).
Moreover, if (1 − χ)f ∈ H0

β′(K) with β′ ≥ β, then (1 − χ)u ∈ H2
β′(K).

Proof. Obviously, RHβ(K; p) ⊂ L2(K). By Theorem 2.5, there exists a unique solution of
the equation A(τ )u = f . The representation (4.19) was obtained in the theory of elliptic
boundary-value problems (see, e.g., [7]). To prove (4.20), we can invoke Proposition 4.2
and use the same argument as in [10] (see also [7]). The relation (1− χ)u ∈ H2

β′(K) can
be verified in the same way as in [6, Proposition 4.3]. �
Proposition 4.5. Suppose that the assumptions listed at the beginning of this subsection
are fulfilled. Then

im Aβ(τ ) = {f ∈ RHβ(K; p) : (f, w(k,j)
µ (·, τ̄)) = 0 for all λµ ∈ Sβ}.

Proof. If f ∈ RHβ(K; p), then (4.19) is valid with c
(k,j)
µ defined by (4.20). Note that

χU
(k,j)
µ,T �∈ DHβ(K; p) for λµ ∈ Sβ. Therefore, u �∈ D(Aβ(τ )) unless c

(k,j)
µ = 0 for all

λµ ∈ Sβ. This means that

im Aβ(τ ) ⊂ {f ∈ RHβ(K; p) : (f, w(k,j)
µ (·, τ̄)) = 0 for all λµ ∈ Sβ}.

We prove the reverse inclusion. Given f ∈ RHβ(K; p), take a sequence {fn} ⊂ C∞
c (K)

such that fn → f in RHβ(K; p). By Lemma 4.4, for un satisfying A(τ )un = fn we have
the representation

un = iχ
∑
Sβ

(fn, w(k,j)
µ (·, τ̄))χU

(k,j)
µ,T + ũn

with χũn ∈ H2
β(K; p). Choosing T sufficiently large, we can assume that the function

∂K � x → N(x, Dx)(χU
(k,j)
µ,T ) decays rapidly as y → 0. In the proof of Proposition 4.2
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we obtained a function v that satisfies N(x, Dx)v = −gt on ∂K and decays rapidly near
the vertex of K and near infinity. Now we put gT = −N(x, Dx)(χU

(k,j)
µ,T ), denote the

corresponding v by Ũ
(k,j)
µ,T , and introduce

vn = un − i
∑
Sβ

(fn, w(k,j)
µ (·, τ̄))(χU

(k,j)
µ,T − Ũ

(k,j)
µ,T ).

Clearly, N(x, Dx)vn = 0 on ∂K and vn ∈ D(Aβ(τ )). Moreover,

(4.21) L(Dx, τ )vn = fn − i
∑
Sβ

(fn, w(k,j)
µ (·, τ̄))L(Dx, τ )(χU

(k,j)
µ,T − Ũ

(k,j)
µ,T ).

The functionals h �→ (h, w
(k,j)
µ (·, τ̄)) are continuous on RHβ(K; p). Therefore, as n → ∞,

the right-hand side of (4.21) tends to

f − i
∑
Sβ

(f, w(k,j)
µ (·, ζ, τ̄))L(Dy, ζ, τ)(χU

(k,j)
µ,T − Ũ

(k,j)
µ,T )

in RHβ(K; p)). By Proposition 3.7, we have

‖vn; DHβ(K; p)‖ ≤ c‖fn; RHβ(K; p)‖,
so that the limit v = lim vn exists in DHβ(K; p), and hence, in RHβ(K; p). It follows
that v ∈ D(Aβ(τ )) and

Aβ(τ )v = f − i
∑
Sβ

(f, w(k,j)
µ (·, τ̄))L(Dx, τ )(χU

(k,j)
µ,T − Ũ

(k,j)
µ,T ).

If (f, w
(k,j)
µ (·, τ̄))=0 for all λµ ∈ Sβ , then f ∈ im Aβ(τ ). �

The modifications needed in the case where n = 2 stem from the fact that the line
�λ = 0 is not free from the spectrum of A. It is known (see, e.g., [11, 7]) that this
line contains one eigenvalue λ0 = 0. Its multiplicity is equal to 2m. A canonical system
of Jordan chains corresponding to λ0 is of the form {ϕ(0,j)

0 , ϕ
(1,j)
0 }m

j=1, where ϕ
(0,j)
0 is

an eigenvector and ϕ
(1,j)
0 is an associated eigenvector. There exist solutions w

(1,j)
0 (·, τ )

of the homogeneous problem (4.12) that admit representations of the form (4.15) with
V

(1,j)
0,T on the right in place of V

(k,j)
µ,T ; the principal term of V

(1,j)
0,T is ϕ

(1,j)
0 + ϕ

(0,j)
0 log |y|.

Let U
(0,j)
0 denote the formal series satisfying (4.12) with the principal term ϕ

(0,j)
0 , j =

1, . . . , l. Lemma 4.4 is still valid, but the terms c
(0,j)
0 U

(0,j)
0,T with c

(0,j)
0 = i(f, w

(1,j)
0 (·, τ̄))

for j = 1, . . . , l must be added to the sum
∑

Sβ
in (4.19). This enables us to describe

im Aβ(τ ) for n = 2 as well. Summarizing the results, we arrive at the following two
theorems.

Let {βk} be the sequence of all numbers 1 > β1 > β2 > · · · such that the line
�λ = βk − 2 + n/2 contains an eigenvalue of the pencil A. It is known that, for n ≥ 3
and β = 1, the line �λ = β − 2 + n/2 = (n − 2)/2 is free from the spectrum of A (see
[7, 11]).

Theorem 4.6. Assume that n ≥ 3. If β1 < β ≤ 1, then the equation

(4.22) Aβ(τ )u = f ∈ RHβ(K; p)

has a unique solution u for any f . The estimate

(4.23) ‖u; DHβ(K; p)‖ ≤ c‖f ; RHβ(K; p)‖
is valid with constant c independent of τ = σ − γ, where σ ∈ R and γ > 0.
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If βq+1 < β < βq, equation (4.22) is solvable if and only if

(4.24) (f, w(k,j)
µ (·, ζ, τ̄)) = 0 for all λµ ∈ Sβ ;

here, as before, Sβ denotes the set of all eigenvalues of the pencil A in the strip β − 2 +
n/2 < �λ < 1. The solution is unique and satisfies (4.23).

Recall that the norms ‖·; RHβ(K; p)‖ for β ≤ 1/2 and for 1/2 < β ≤ 1 are given by
(4.3) and (4.4), respectively. Moreover, the definitions of DHβ(K; p) are different for
n ≥ 3 and for n = 2 (see (4.1) and (4.2)).

Theorem 4.7. Let n = 2. If β1 < β < 1, then equation (4.22) has a solution for any f .
If βq+1 < β < βq and β > −1/2, then equation (4.22) is solvable only under conditions
(4.24), and if β ≤ −1/2, the requirements (f, w

(1,j)
0 (·, ζ, τ̄)) = 0 for j = 1, . . . , l must be

added to conditions (4.24). The solution is unique and satisfies (4.23).

Since D(Aβ(τ )) ⊂ D(A(τ )) by Proposition 4.1, we see that the solutions provided by
Theorems 4.6 and 4.7 are strong solutions of problem (2.13). Thus, the above theorems
describe conditions under which the strong solution belongs to D(Aβ(τ )).

§5. The asymptotics of solutions

5.1. The asymptotics of solutions of the problem in a cone. The change of
variables

η = px, U(η, τ) = û(p−1η, τ), F (η, τ) = p−2f̂(p−1η, τ)
transforms (2.5) to

(5.1)

{
L(Dη, θ)U(η, τ) = F (η, τ) if η ∈ K,

N(η, Dη)û(x, τ) = 0 if η ∈ ∂K,

where θ = τ/p; we also put θ̄ = τ̄ /p.
Let F ∈ RHβ(K; 1) with βq+1 < β < βq. Then, as was shown in the proof of

Proposition 4.5, the strong solution of (5.1) admits the representation

(5.2) U = V + i
∑
Sβ

(F, w(k,j)
µ (·, θ̄))(χU

(k,j)
µ,T (·, θ) − Ũ

(k,j)
µ,T (·, θ)),

where V is the solution of the equation Aβ(θ)V = F ′ with

(5.3) F ′ := F − i
∑
Sβ

(F, w(k,j)
µ (·, θ̄))L(Dη, θ)(χU

(k,j)
µ,T (·, θ) − Ũ

(k,j)
µ,T (·, θ));

here by
∑

Sβ
we mean the sum of all terms corresponding to the eigenvalues of A in the

strip β − 2 + n/2 < �λ ≤ (n − 2)/2. Since

(5.4) |(F, w(k,j)
µ (·, θ̄))| ≤ c‖F ; RHβ(K; 1)‖,

we have

(5.5) ‖F ′; RHβ(K; 1)‖ ≤ c‖F ; RHβ(K; 1)‖
with a constant c independent of θ. Now, Theorems 4.6 and 4.7 yield the estimate

(5.6) ‖V ; DHβ(K, 1)‖ ≤ c‖F ; RHβ(K; 1)‖.
Obviously,

(5.7)
∥∥∥∥ ∑

Sβ

(F, w(k,j)
µ (·, θ̄))Ũ (k,j)

µ,T (·, θ); DHβ(K; 1)
∥∥∥∥ ≤ c‖F ; RHβ(K; 1)‖.

Thus, we arrive at the following assertion.
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Theorem 5.1. If βk+1 < β < βq and F ∈ RHβ(K; 1), then the strong solution U of
problem (5.1) admits the representation

(5.8) U = iχ
∑
Sβ

d(k,j)
µ U

(k,j)
µ,T (·, θ) + ρ(·, θ),

where the coefficients

(5.9) d(k,j)
µ = (F, w(k,j)

µ (·, θ̄))
are continuous functionals on RHβ(K; 1), and the remainder ρ(·, θ) satisfies

(5.10) ‖ρ(·, θ); DHβ(K; 1)‖ ≤ c‖F ; RHβ(K; 1)‖
with a constant c independent of θ.

5.2. On the problem in the cylinder Q = K × R. Here we formulate the results
concerning the problem in Q and obtained from those on the problem in the cone K with
the help of the inverse Fourier transformation. We restrict ourselves to the case where
n ≥ 3.

The space Hs
β(Q) is the completion of the set C∞

c ((K \ 0) × R) with respect to the
norm

(5.11) ‖w; Hs
β(Q)‖ =

( ∑
|α|≤s

∫
K

∫
R

|x|2(β−s+|α|)|Dα
x,tw(x, t)|2 dx dt

)1/2

.

The norm in Hs
β(Q; q) is given by (3.2) with Q in place of K. Let V s

β (Q, γ) with γ > 0
stand for the space with the norm

(5.12) ‖w; V s
β (Q; γ)‖ = ‖wγ ; Hs

β(Q; γ)‖,
where wγ(x, t) = exp(−γt)w(x, t). It can be checked (see [5]) that the norm ‖w; W s

β(Q; γ)‖
is equivalent to each of the following two norms:
(5.13)( ∫

‖ŵ(·, τ ); Hs
β(K; p)‖2 dσ

)1/2

,

( ∫
p−n−2(β−s)‖W (·, τ ); Hs

β(K; 1)‖2 dσ

)1/2

,

where ŵ is the Fourier transform of w and W (η, τ) = ŵ(p−1η, τ) (we mean that the
corresponding constants in the equivalence relations do not depend on γ > 0).

Consider problem (2.1) with f ∈ V 0
0 (Q; γ), γ > 0. Let û(·, τ ) be a strong solution

of problem (2.5) with right-hand side f̂(·, τ ) = Ft→τf(·, t). The function u defined by
u(x, t) = F−1

τ→tû(x, τ) is called a strong solution of problem (2.1). Theorem 2.5 leads to
the following.

Theorem 5.2. For any f ∈ V 0
0 (Q; γ) with γ > 0 there exists a unique strong solution u

of problem (2.1). The estimate

γ‖u; V 1
0 (Q; γ)‖ ≤ c‖f ; V 0

0 (Q; γ)‖
is valid with constant c independent of γ > 0.

We fix a function χ ∈ C∞
c (K) equal to 1 near the vertex of the cone K and introduce

the operator
(Xu)(x, t) = F−1

τ→tχ(px)Ft′→τu(x, t′).
We also set

(Λu)(x, t) = F−1
τ→tpFt′→τu(x, t′).

For β ∈ R and γ > 0, let DVβ(Q; γ) be the space with the norm

‖u;DVβ(Q; γ)‖ = (‖Xu, V 2
β (Q; γ)‖2 + γ2‖u; V 1

β (Q; γ)‖2)1/2.
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If β ≤ 1/2, then the space RVβ(Q; γ) is endowed with the norm

‖f ;RVβ(Q; γ)‖ =
(
‖f ; V 0

β (Q; γ)‖2 + γ−2‖Λ1−βf ; V 0
0 (Q; γ)‖2

)1/2
.

For 1/2 ≤ β ≤ 1 we put

‖f ;RVβ(Q; γ)‖ =
(
‖f ; V 0

β (Q; γ)‖2 + γ−4β‖Λβf ; V 0
0 (Q; γ)‖2

)1/2
.

Clearly, RVβ(Q; γ) ⊂ V 0
0 (Q; γ).

Applying Theorem 4.6, we obtain the following result.

Theorem 5.3. Assume that n ≥ 3 and f ∈ RVβ(Q; γ). If β1 < β ≤ 1, then the strong
solution u of problem (2.1) belongs to DVβ(Q; γ). We have

(5.14) ‖u;DVβ(Q; γ)‖ ≤ c‖f ;RVβ(Q; γ)‖

with constant c independent of γ > 0. In the case where βq+1 < β < βq, the strong
solution belongs to DVβ(Q; γ) if and only if

(f̂(·, τ ), w(k,j)
µ (·, τ̄)) = 0

for all λµ ∈ Sβ and almost all τ = σ − iγ with σ ∈ R. Under these conditions, estimate
(5.14) remains valid.

5.3. The asymptotics of solutions to the problem in a cylinder. To apply Theo-
rem 5.1 to the problem in a cylinder, we must pass to the variables x = η/p. (The further
analysis of the asymptotics is similar to that given in the theory of elliptic boundary-value
problems; see [23, 7]. We discuss only a simple situation.) Suppose that β, β′ /∈ {βq}
and that the interval (β′, β) contains an element of the sequence {βq}. Also, assume that
β − β′ < 1. Let F ∈ RHβ′(K; 1), and let U satisfy the equation Aβ(θ)U = F . We shall
describe the contribution to the asymptotics for U of the eigenvalues λν located in the
strip

β′ − 2 + n/2 < �λ < β − 2 + n/2.

Let S(β′, β) be the set of all eigenvalues in this strip. Theorem 5.1 shows that

(5.15) U(η) = χ(η)
∑

λν∈S(β′,β)

d(k,j)
ν u(k,j)

ν (η) + V (η),

where

u(k,j)
ν (η) = |η|iλν

k∑
q=0

1
q!

(i log |η|)qϕ(k−q,j)
ν (η/|η|),

and ‖V ; DH ′
β(K; 1)‖ ≤ c‖F ; RH ′

β(K; 1)‖. Returning to the variables x = η/p, we set
u(x) = U(px), f(x) = p2F (px) and obtain

L(Dx, τ )u(x) = f(x), x ∈ K,

N(x, Dx)u(x) = 0, x ∈ ∂K \ 0.
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We rewrite (5.15) in the new variables. We have

κj,ν−1∑
k=0

d(k,j)
ν u(k,j)

ν (η)

= |px|iλν

κj,ν−1∑
k=0

d(k,j)
ν

k∑
q=0

1
q!

(i log |x| + i log p)qϕ(k−q,j)
ν (ω)

= piλν

κj,ν−1∑
k=0

d(k,j)
ν

k∑
q=0

1
q!

(i log p)qu(k−q,j)
ν (x)

=
κj,ν−1∑

k=0

u(k,j)
ν (x)

{
piλν

κj,ν−k−1∑
q=0

1
q!

(i log p)qd(k+q,j)
ν

}
.

Let c
(k,j)
ν (p) denote the expression in braces. Then (5.15) takes the form

(5.16) u(x) = χp(x)
∑

λν∈S(β′,β)

c(k,j)
ν (p)u(k,j)

ν (x) + v(x),

where χp(x) = χ(px) and v(x) = V (px).

Theorem 5.4. Let β and β′ satisfy the conditions listed at the beginning of this subsec-
tion. Suppose f ∈ RVβ′(Q; γ) and u is a strong solution of problem (2.1) in DVβ(Q; γ).
Then

(5.17) u(x, t) =
∑

(Xč(k,j)
ν )(x, t)u(k,j)

ν (x) + v(x, t),

where
č(k,j)
ν (t) = F−1

τ→tc
(k,j)
ν (τ ),

c(k,j)
ν (τ ) = piλν

κj,ν−k−1∑
q=0

1
q!

(i log p)qd(k+q,j)
ν (τ ),

and the functions d
(k+q,j)
ν are given by the formula

(5.18) d(k+q,j)
ν (τ ) = p−2(f̂(·/p, τ ), w(k,j)

ν (·, τ̄))K

and satisfy

(5.19) ‖ď(k,j)
ν ; H2−n/2−β′

(R)‖ ≤ c‖f ;RVβ′(Q; γ)‖.

(The operator X was defined after Theorem 5.2.) The asymptotics (5.17) involves the
terms corresponding to the eigenvalues λν in the strip β′ < �λ + 2 − n/2 < β. The
remainder v in (5.17) satisfies the estimate

(5.20) ‖v;DVβ′(Q; γ)‖ ≤ c‖f ;RVβ′(Q; γ)‖.

Proof. Relation (5.17) follows from (5.16). Formulas (5.18) are deduced from (5.9). To
obtain (5.19), we can combine the estimate

|d(k,j)
ν (τ )| ≤ p−2‖f̂(·/p, τ ); RHβ′(K; 1)‖,

which is a consequence of (5.18), and the identity

‖f ;RVβ′(Q; γ)‖2 =
∫

R

p−n−2β′
‖f̂(·/p, τ ); RHβ′(K; 1)‖2 dσ. �
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We explain the role of the operator X in the asymptotic formula (5.17). The rep-
resentations for c

(k,j)
ν and estimate (5.19) (which is sharp in the sense of smoothness)

show that c
(k,j)
ν can be highly nonsmooth in time. Therefore, the term c

(k,j)
ν (t)u(k,j)

ν (x)
included in the asymptotics (5.17) instead of (Xč

(k,j)
ν )(x, t)u(k,j)

ν (x), could be less smooth
than the solution u itself. The operator X smoothes the extension of c

(k,j)
ν to the interior

of the cylinder and allows us to avoid the unnatural situation mentioned above. If the
function c

(k,j)
ν is sufficiently smooth, then we can do without X. This will be explained

by the example of the wave equation. Phenomena of such kind are well studied in the
theory of elliptic problems (see, e.g., [23, 7]).

§6. Example: The wave equation

The above results can be detailed and made more explicit for the wave equation. To
show this, we recall some information about the spectrum of the pencil A.

Assume that P (Dx) = ∆x is the Laplacian, n = 2, K is an angle in R2 of opening
α, N(x, Dx) = ∂ν , and ν = (ν1, ν2) is the unit normal to ∂K. The pencil A has simple
eigenvalues λ±k = ∓k(π/α)i for k = 1, 2, . . . , and the eigenvalue λ0 = 0 has multiplicity
2. For k > 0, with λ±k we associate the eigenvectors

(6.1) Φk(ω) = φ
(0,1)
k (ω) := (kπ)−1/2 cos(kπω/α).

With the eigenvalue λ0 = 0 we associate the eigenvector Φ0(ω) = φ
(0,1)
0 (ω) := α−1/2 and

the generalized eigenvector Φ01 = φ
(1,1)
0 := 0.

Now we assume that n > 2 and consider P (Dx) = ∆x and N(x, Dx) = ∂ν , where ν is
the unit normal to ∂K × Rd. In this case

A(λ) = {(iλ)2 + (n − 2)iλ − δ, ∂ν′} : H2(Ω) → L2(Ω) ⊕ H1/2(∂Ω),

where δ is the Laplacian on Sn−1 and ν′ is the unit normal to ∂Ω. The spectrum of the
pencil A consists of the normal eigenvalues

λ±k =
i

2
{(n − 2) ∓ ((n − 2)2 + 4µk)1/2}, k = 0, 1, . . . ,

where {µk} (0 = µ0 < µ1 ≤ · · · ) is the sequence of all eigenvalues of the operator {δ, ∂ν′}
counted with their multiplicities. With the eigenvalues λ±k we associate the eigenvectors
Φk = φ

(0,1)
k chosen so as to have√

(n − 2)2 + 4µj(Φj , Φk)Ω = δjk.

There are no generalized eigenvectors. If n = 3, then the strip 0 ≤ �λ ≤ 1/2 contains
only one eigenvalue 0, and any eigenvector is a constant.

For the wave equation, the formal series (4.13) and (4.14) converge, and their sums
can be found explicitly (see [8, 9]). In the case where n > 2 we shall omit the superscripts
in (4.13) and (4.14). We have

(6.2)
Uk(x, τ) = Γ(1 + νk)2νk(ir

√
τ2)−νkIνk

(ir
√

τ2)riλ+kΦk(ω),

Vk(x, τ) = (21−νk/Γ(νk))(ir
√

τ2)νkKνk
(ir

√
τ2)riλ−kΦk(ω)

with νk = (
√

(n − 2)2 + 4µk)/2, where the Iν and Kν are modified Bessel functions of
the first and the third kind, respectively.

For n = 2, there are two additional solutions of the homogeneous problem (4.12);
these correspond to the eigenvalue λ0 = 0:

(6.3) U
(0,1)
0 (x, τ) = α−1/2I0(ir

√
τ2), V

(1,1)
0 (x, τ) = α−1/2K0(ir

√
τ2),
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where α is the opening of the angle K ⊂ R2, as before.
Relations (6.2) and (6.3) show that the solutions Vk have power rate of growth near

the vertex of the cone and decay exponentially at infinity. The solutions Uk are of class
H1 in a neighborhood of the vertex and grow exponentially at infinity. If n = 2, then
V

(1,1)
0 is of logarithmic growth near the vertex and decays rapidly at infinity, while U

(0,1)
0

grows exponentially at infinity and has a finite limit at the vertex. (Clearly, the Vk are
precisely the functions constructed in Proposition 4.2.)

Now we specify Theorems 4.6 and 4.7 for the wave equation. We consider L(Dx, τ ) =
−∆ − τ2 and N(x, Dx) = ∂ν . The spaces RHβ(K; p) and DHβ(K; p) are defined by
(4.1), (4.2), and (4.3) (formula (4.3) is valid for any β ≤ 1; for the wave equation, we do
not need to distinguish the case of 1/2 ≤ β ≤ 1). In what follows we denote by Aβ(τ )
the (closed) operator of problem (2.13) with domain D(Aβ(τ )) ⊂ DHβ(K; p).

Theorem 6.1. Assume that n ≥ 3. If 1 ≥ β > 1−(n−2)/2, then for any F ∈ RHβ(K; p)
equation (4.22) has a solution. For β ∈ (�λk+1+2−n/2,�λk +2−n/2), equation (4.22)
is solvable if and only if (F, Vj(·, τ̄)) = 0, j = 0, 1, . . . , k. The solution U is unique and
satisfies (4.23).

Theorem 6.2. Assume that n = 2. If 1 > β > max{0, 1 − π/α}, then for any F ∈
RHβ(K; p) equation (4.22) has a solution. For the other β, equation (4.22) is solvable if
the following conditions are fulfilled.

For α > π:
(i) β ∈ (0, 1 − π/α) and (F, V1(·, τ̄)) = 0;
(ii) β ∈ (1 − 2π/α, 0] and (F, V01(·, τ̄)) = 0, (F, V1(·, τ̄)) = 0;
(iii) β ∈ (1 − (k + 1)π/α, 1 − kπ/α) and F is orthogonal to V01, V1, . . . , Vk, where

k = 2, 3, . . . .
For α < π:

(i) β ∈ (1 − π/α, 0] and (F, V01(·, τ̄)) = 0;
(ii) β ∈ (1 − (k + 1)π/α, 1 − kπ/α) and F is orthogonal to V01, V1, . . . , Vk, where

k = 1, 2, . . . .
The solution U is unique and satisfies (4.23).

We turn to Theorem 5.4. We shall present full asymptotic expansions for the strong
solutions. Moreover, we shall show how to get rid of the operator X occurring in (5.18).
We deal with the mixed Cauchy–Neumann problem in a semicylinder and restrict our-
selves to the case where d = 0, n ≥ 3.

For an open cone K in R
n
x , we consider the problem

(6.4)


(∂2

t − ∆x)u(x, t) = 0, (x, t) ∈ K × (0, +∞),
∂νu|∂K × (0, +∞) = 0,

u(x, 0) = φ(x), u′
t(x, 0) = ψ(x),

where φ, ψ ∈ C∞
0 (K).

In order to obtain explicit formulas for the coefficients in the asymptotic expansions
of solutions, we calculate the inverse Fourier transform Wk(x, t) = F−1

τ→tVk(x, τ).
It is known (see, e.g., [24]) that

22µΓ(2µ + 1/2)(p/b)−2µK2ν(bp) =
∫ +∞

−∞
exp(−pt)P (t) dt

with �µ > −1/4, where

P (t) =

{
0 if t < b,

π1/2(t2 − b2)(4µ−1)/2F (µ − ν, µ + ν, 2µ + 1/2, 1 − t2/b2) if t > b,
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and F is the hypergeometric function. Assume that b = r, p = iτ , m is a positive integer,
µ = [ν] − ν + m, and N = [ν] + m; we put ν = νk = (

√
(n − 2)2 + 4µk)/2. Then

(iτ)νKν(irτ ) = rν−N(iτ)N

(
iτ

r

)−µ

Kν(irτ)

=
2−µ

Γ(µ + 1/2)
rν−NFt→τ

(
d

dt

)N

TN (r, t, µ, ν),

where

TN (r, t, µ, ν)

=

{
0 if t < r,

π1/2(t2 − r2)(2µ−1)/2F ((µ − ν)/2, (µ + ν)/2, µ + 1/2, 1 − t2/r2) if t > r,

(6.5)

and the Fourier transformation and differentiation are understood in the sense of distri-
butions. Thus, we have

(6.6) Wk(x, t) =
(

d

dt

)N

PN,k(x, t)

with

(6.7) PN,k(x, t) =
21−N

Γ(ν)Γ(µ + 1/2)
rν−µ+iλ−kΦk(ω)TN (r, t, µ, ν),

where r = |x|; in fact, the right-hand side of (6.6) is independent of the choice of m
(recall that N = [ν] + m).

In what follows we shall also need the expression

(6.8) Uk(x, τ) = Γ(1 + νk)riλkΦk(ω)
∞∑

m=0

(irτ)2m

22mm!Γ(m + νk + 1)

for the series Uk(x, τ), which can easily be obtained from the well-known expansion for
the Bessel function.

Let {βk} be the sequence of all numbers 1 > β1 > β2 > · · · such that every line
�λ = βk − 2 + n/2 contains an eigenvalue of the pencil A.

Theorem 6.3. Suppose β ∈ (βk+1, βk), γ > 0, νj = (
√

(n − 2)2 + 4µj)/2, and Nj =
[νj ] + m, where m is an integer, m ≥ 4. To be specific, we assume that Nj is even,
Nj = 2lj. Set

(6.9) čj(t) =
∫

K

∆lj ψ(y)PNj ,j(y, t) dy +
∫

K

∆lj φ(y)∂tPNj ,j(y, t) dy

with PN,k given by (6.7). Then for the strong solution u of problem (6.4) we have

(6.10) u(x, t) = χ(r)
∑
Sβ

Γ(1 + νj)
{ Lj∑

m=0

(r∂t)2mčj(t)
22mm!Γ(m + νj + 1)

}
Φj(ω)riλj + ρ(x, t),

where χ is a cut-off function equal to 1 near the origin, the Lj are sufficiently large
integers, and

∑
Sβ

means the sum of all terms corresponding to the eigenvalues of A in
the strip β − 2 + n/2 < �λ ≤ (n − 2)/2. The remainder ρ satisfies the estimate

‖ρ; DVβ(K × R, γ)‖ ≤ c(γ).
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Proof. Suppose w has the following properties:
1) w ∈ C∞

0 (K × R);
2) w(x, 0) = φ(x), w′

t(x, 0) = ψ(x);
3) ((∂2

t −∆x)w)+ = θ+(∂2
t −∆x)w ∈ C∞

0 (K ×R), where θ+ is the indicator of the set
{t : t ≥ 0}.

Such a function w can be constructed if we observe that conditions 2) and 3) are
equivalent to the relations

∂2n+1
t w(x, 0) = ∆n

xψ, ∂2n
t w(x, 0) = ∆n

xφ, n = 0, 1, 2, . . . ,

and use Borel’s theorem (see, e.g., [25, Theorem 1.2.6]). The difference v = u−w satisfies

(6.11)


(∂2

t − ∆x)v = −(∂2
t − ∆x)w on K × (0, +∞),

∂νv = 0 on ∂K × (0, +∞),
v|t=0 = 0, v′t|t=0 = 0.

It can be shown that for t > 0 the solution of (6.11) coincides with that of the following
problem in the cylinder K × R:

(6.12)

{
(∂2

t − ∆x)v = −((∂2
t − ∆x)w)+ on K × R,

∂νv = 0 on ∂K × R = 0.

Since w vanishes for small |x|, the functions u and v coincide near the vertex of K. We
put g = −(∂2

t − ∆x)w and g+ = θ+g. Theorem 5.4 implies that

(6.13) v(x, t) =
∑
j∈J

riλjULj

j (r∂t, ω)(Xčj)(x, t) + ȟ(x, t),

where
čj(t) = F−1

τ→t(ĝ+(·, τ ), Vj(·, τ̄))L2(K),

the operator X is defined after Theorem 5.2, and riλjULj

j (r∂t, ω) is the Ljth partial sum
of the series (6.8) with ∂t and j in place of iτ and k. The remainder ȟ satisfies (5.20)
with f replaced by g+.

Now we verify (6.9). We have

čj(t) =
∫

K

dy

∫ +∞

−∞
g+(y, s)Wj(y, t − s) ds.

Using (6.7) and integrating by parts twice, we obtain
(6.14)

čj(t) = (−1)Nj

∫
K

dy

∫ +∞

0

∂Nj
s g(y, s)PNj ,j(y, t − s) ds

= (−1)Nj

(∫
K

dy

∫ +∞

0

∂Nj
s w(y, s)∆yPNj ,j(y, t − s) ds

+
∫

K

dy
{

∂Nj+1
s w(y, 0)PNj ,j(y, t) + ∂Nj

s w(y, 0)∂sPNj ,j(y, t)

−
∫ +∞

0

∂Nj
s w(y, s)∂2

sPNj ,j(y, t − s) ds

})
.

Since the integrals over K × R+ cancel, we have

(6.15) čj(t) = (−1)Nj

( ∫
K

∂
Nj+1
t w(y, 0)PNj ,j(y, t) dy+

∫
K

∂
Nj

t w(y, 0)∂tPNj ,j(y, t) dy

)
.

Recalling that Nj = 2lj , we arrive at (6.9).
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It remains to show how to eliminate the operator X from (6.13). We have

(6.16) (Xčj)(x, t) − χ(r)čj(t) =
∫
�τ=−γ

exp(itτ)(χ(|τ |r)− χ(r))cj(τ ) dτ

with
cj(τ ) = (ĝ+(·, τ ), Vj(·, τ̄))L2(K).

Since g+ ∈ C∞
0 (K × R), we can use the expression for Vj and the asymptotics of the

Bessel function to obtain

(6.17)
∣∣∣∣( d

dτ

)k

cj(τ )
∣∣∣∣ ≤ c(γ, k, N)|τ |−N , k, N ≥ 0.

From (6.16) and (6.17) it follows that the difference

κ(x, t) =
∑
j∈J

riλjULj

j (r∂t, ω)(Xčj(x, t)) − χ(r)
∑
j∈J

riλjULj

J (r∂t, ω)čj(t)

belongs to V s
β′(K × R; γ) for any s ∈ N0 and any β′ ∈ R. In particular, the norm

‖κ; DVβ(K × R, γ)‖ is finite. Setting ρ(x, t) = κ(x, t) + ȟ(x, t), we obtain the desired
result. �

§7. A bounded domain with a conical point

Let G be a bounded domain in Rn with boundary ∂G that is smooth outside a point
O. We assume that O is the origin and that in a neighborhood of O the domain G
coincides with an open cone K that cuts out a domain Ω from the sphere Sn−1; next, it
is assumed that Ω has smooth boundary. We consider the problem

(7.1)
L(Dx, Dt)u(x, t) = f(x, t), (x, t) ∈ G × R,

N(x, Dx)u(x, t) = 0, (x, t) ∈ ∂G × R,

where the operators L(Dx, Dt) = P (Dx) − D2
t and N(x, Dx) are the same as in (2.1).

Proposition 7.1. Suppose v ∈ C∞(Ḡ), N(x, Dx)v = 0 on ∂G = 0, and the operator
P (Dx) satisfies condition a) in 2.1. Then

(7.2) γ2

∫
G

(|τ |2|v(x)|2 + |∇v(x)|2) dx ≤ c

∫
G

|L(Dx, σ − iγ)v(x)|2 dx

with constant c independent of τ = σ − iγ, where σ ∈ R and γ > 0.
If P (Dx) is the Lamé operator (and n = 2, 3), then estimate (7.2) remains valid for

γ ≥ γ0 with sufficiently large γ0, and the constant c depends only on γ0.

Proof. Suppose that u ∈ S(Rn+1
x,t ) and N(x, Dx)u = 0 on ∂G × R. As in the proof of

Proposition 2.1, we obtain the inequality

(7.3) ‖ut(·, t); T‖2 + (P (Dx)u(·, t), u(·, t))T = 2�
∫

T

∫ t

−∞
〈f, ut〉 dx dt,

where f(x, t) = (∂2
t + P (Dx))u(x, t). If the operator P (Dx) satisfies condition a), then

(7.4) (P (Dx)u(·, t), u(·, t))T = a(u(·, t), u(·, t)) ≥ c1‖∇u; T‖2,

and we can proceed as in the proof of Proposition 2.1. For the Lamé operator, estimate
(7.4) fails. We use the Korn inequality

(7.5) (P (Dx)u, u)T = a(u, u) ≥ c‖∇u; T‖2 − c1‖u; T‖2.
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By (7.5) and (7.3), we have

γ2

∫
T

dy

∫ +∞

−∞
dσ|ψ̂(σ − iγ)|2(|τ |2|v(y)|2 + |∇v(y)|2 − c3|v(y)|2)

≤ c

∫
T

dy

∫ +∞

−∞
dσ|ψ̂(σ − iγ)|2|L(Dy, ζ, σ − iγ)|v(y)|2

for any ψ ∈ exp(−γt)S(R) ∩ S(R). This implies (7.2) for sufficiently large γ. �
We introduce the operator u �→ L(Dx, τ )u on L2(G) with domain

{u ∈ C∞(Ḡ \ O) ∩ H1(G) : N(x, Dx)u|∂G = 0, L(Dx, τ )u ∈ L2(G)}.
The closure of this operator will be denoted by A(τ ). A solution of the equation A(τ )u =
f ∈ L2(G) will be called a strong solution of the problem

(7.6)
L(Dx, τ )u(x) = f, x ∈ G,

N(x, Dx)u(x) = 0, x ∈ ∂G.

As in Subsection 2.4, we obtain the following result.

Theorem 7.2. Suppose the operator P (Dx) satisfies condition a) in 2.1. For any f ∈
L2(G) and any τ = σ − iγ with σ ∈ R and γ > 0, there exists a unique strong solution u
of problem (7.6). We have

γ2(|τ |2‖u; L2(G)‖2 + ‖∇u; L2(G)‖2) ≤ c‖f ; L2(G)‖2

with constant c independent of σ and γ.
If P (Dx) is the Lamé operator, then the same is true provided γ ≥ γ0 > 0 with

sufficiently large γ0.

We introduce the spaces DHβ(G; |τ |) and RHβ(G; |τ |) endowed with the norms (4.1)–
(4.3), where K is replaced by G and p = |τ |. As before, for the wave equation we define
the space RHβ(G; |τ |) by (4.3) with β ≤ 1.

Proposition 7.3. Suppose that β ≤ 1, the line �λ = β−2+n/2 contains no eigenvalues
of the pencil A, and γ ≥ γ0 with large γ0 > 0. Then for any function u ∈ C∞

c (Ḡ \ O)
such that N(x, Dx)u|∂G = 0 we have the estimate

(7.7) ‖u; DHβ(G; |τ |)‖ ≤ c‖L(Dx, τ )u; RHβ(G; |τ |)‖
with constant c independent of σ and γ.

Proof. We outline the proof for the wave equation. (In the general case, the argument
given below fails, because ψu with a cut-off function ψ does not satisfy the boundary
condition N(x, Dx)(ψu)|∂G = 0, so that we cannot apply inequality (3.26) directly. To
obtain the required estimate, one must argue as in the proof of Proposition 3.1.)

For instance, assume that n > 2 and ψ is a cut-off function equal to 1 near the point
O and supported in the neighborhood of O where G coincides with K. Also, we assume
that ψ depends only on |x|. We have

(7.8)
L(Dx, τ )(ψu) = ψL(Dx, τ )u + [L(Dx, τ ), ψ]u, x ∈ G,

∂ν(ψu) = 0, x ∈ ∂G.

By (3.26),

(7.9)
‖ψu; DHβ(K; |τ |)‖

≤ c (‖ψL(Dx, τ )u; RHβ(K; |τ |)‖ + ‖[L(Dx, τ ), ψ]u; RHβ(K; |τ |)‖) .

The definition of the norm on RHβ(K; |τ |) implies that

‖[L, ψ]u; RHβ(K; |τ |)‖ ≤ c(‖[L, ψ]u; H0
β(K)‖ + |τ |1−βγ−1‖[L, ψ]u; L2(K)‖).
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Estimate (7.2) yields

‖[L, ψ]u; L2(K)‖ ≤ ‖v; H1
0 (G; |τ |)‖ ≤ ‖L(Dx, τ )u; L2(G)‖;

moreover, ‖[L, ψ]u; H0
β(K)‖ ≤ c‖u; H1

β(G; |τ |)‖. This leads to the inequality

‖ψu; DHβ(G; |τ |)‖ ≤ c(‖u; H1
β(G; |τ |)‖ + ‖L(Dx, τ )u; RHβ(G; |τ |)‖).

We use (7.2) once again to obtain

(7.10) ‖(1 − ψ)u; DHβ(G; |τ |)‖ ≤ c‖u; H1
0 (G; |τ |)‖ ≤ c‖Lu; RHβ(G; |τ |)‖.

Adding up (7.9) and (7.10), we arrive at (7.7) with sufficiently large γ. �

The method used in §§4 and 5 can easily be adapted to problem (7.6). In particular,
the role of functions w

(k,j)
µ constructed in Proposition 4.2 can be played by the functions

W
(k,j)
µ that are solutions of the homogeneous problem (7.6) with asymptotics V

(k,j)
µ,T (x, τ)

near O. The construction of W
(k,j)
µ is essentially the same as that of w

(k,j)
µ .

Let û(·, τ ) be a strong solution of problem (7.6) with the right-hand side f̂(·, τ ) =
Ft→τf(·, t). The function (x, t) �→ u(x, t) = F−1

τ→tû(x, τ) is called a strong solution of
problem (7.1). The spaces RVβ(Q; γ) and DVβ(Q; γ) in the cylinder G×R are introduced
as in Subsection 5.2, with the replacement of K by G in all intermediate formulas. The
following analog of Theorem 5.4 is true.

Theorem 7.4. Let γ ≥ γ0 with sufficiently large γ0, and let β and β′ be the same as
in Theorem 5.4. If f ∈ RVβ′(Q; γ), and u ∈ DVβ(Q; γ) is a strong solution to problem
(7.1), then

(7.11) u(x, t) =
∑

(Xč(k,j)
ν )(x, t)u(k,j)

ν (x) + v(x, t),

where
č(k,j)
ν (t) = F−1

τ→tc
(k,j)
ν (τ ),

c(k,j)
ν (τ ) = |τ |iλν

κj,ν−k−1∑
q=0

1
q!

(i log |τ |)qd(k+q,j)
ν (τ ),

and the functions d
(k+q,j)
ν are given by the formula

(7.12) d(k+q,j)
ν (τ ) = |τ |−2(f̂(·/|τ |, τ ), W (k,j)

ν (·, τ̄))T

and satisfy

(7.13) ‖ď(k,j)
ν ; H−n/2+2−β′

(R)‖ ≤ c‖f ;RVβ′(Q; γ)‖.

The operator X is defined by the relation

(Xw)(x, t) = F−1
τ→tχ(|τ |x)Ft′→τw(t′).

The asymptotics (7.11) consists of the terms corresponding to the eigenvalues λν in
the strip β′ < �λ + 2 − n/2 < β. The remainder v in (7.11) satisfies the estimate

‖v;DVβ′(Q; γ)‖ ≤ c‖f ;RVβ′(Q; γ)‖.

The role played by the operator X in the asymptotics (7.11) was explained after the
proof of Theorem 5.4.
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